Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Tissue Engineering

E-BookPDF1 - PDF WatermarkE-Book
634 Seiten
Englisch
Springer Berlin Heidelbergerschienen am16.12.20102011
Tissue engineering is a multidisciplinary field incorporating the principles of biology, chemistry, engineering, and medicine to create biological substitutes of native tissues for scientific research or clinical use. Specific applications of this technology include studies of tissue development and function, investigating drug response, and tissue repair and replacement. This area is rapidly becoming one of the most promising treatment options for patients suffering from tissue failure. This abundantly illustrated and well-structured guide serves as a reference for all clinicians and researchers dealing with tissue engineering issues in their daily practice.


Norbert Pallua is Professor, Chairman and Director of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital, Aachen, Germany. Professor Pallua is recognized to be among the leading Plastic Surgeons in Germany. He is also nominated Honorary Professor and Director of several Universities. Professor Pallua is the author of numerous scientific and clinical publications and is a reviewer for several leading journals. He has been responsible for developing innovative methods of extensive facial reconstruction and has led research into tissue engineering, with a particular focus on soft tissue. Professor Christoph Suschek works in the laboratory of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital in Aachen as leading biologist. Professor Suschek is the author or co-author of many journal articles presenting research related to tissue engineering approaches, such as ways in which the induction of inflammation might be used to stimulate adipose tissue formation.
mehr
Verfügbare Formate
BuchGebunden
EUR160,49
E-BookPDF1 - PDF WatermarkE-Book
EUR149,79

Produkt

KlappentextTissue engineering is a multidisciplinary field incorporating the principles of biology, chemistry, engineering, and medicine to create biological substitutes of native tissues for scientific research or clinical use. Specific applications of this technology include studies of tissue development and function, investigating drug response, and tissue repair and replacement. This area is rapidly becoming one of the most promising treatment options for patients suffering from tissue failure. This abundantly illustrated and well-structured guide serves as a reference for all clinicians and researchers dealing with tissue engineering issues in their daily practice.


Norbert Pallua is Professor, Chairman and Director of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital, Aachen, Germany. Professor Pallua is recognized to be among the leading Plastic Surgeons in Germany. He is also nominated Honorary Professor and Director of several Universities. Professor Pallua is the author of numerous scientific and clinical publications and is a reviewer for several leading journals. He has been responsible for developing innovative methods of extensive facial reconstruction and has led research into tissue engineering, with a particular focus on soft tissue. Professor Christoph Suschek works in the laboratory of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital in Aachen as leading biologist. Professor Suschek is the author or co-author of many journal articles presenting research related to tissue engineering approaches, such as ways in which the induction of inflammation might be used to stimulate adipose tissue formation.
Details
Weitere ISBN/GTIN9783642028243
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum16.12.2010
Auflage2011
Seiten634 Seiten
SpracheEnglisch
IllustrationenIX, 634 p. 658 illus., 600 illus. in color.
Artikel-Nr.1718585
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Tissue Engineering;2
1.1;Copyright Page;3
1.2;Preface;4
1.3;Contents;6
1.4;Part I: Basics and Principlesof Tissue Engineering;9
1.4.1;1: Micro- and Nanotechnology in Tissue Engineering;10
1.4.1.1;1.1 Introduction;10
1.4.1.2;1.2 Aim of the Discipline;11
1.4.1.3;1.3 State of the Art;12
1.4.1.3.1;1.3.1 The Need for Micro and Nanotechnologies in Tissue Engineering Strategies;12
1.4.1.3.2;1.3.2 Micro and Nanofabrication Methods;13
1.4.1.3.2.1;1.3.2.1 Bottom-Up Approach;14
1.4.1.3.2.2;1.3.2.2 Top-Down Approach;15
1.4.1.3.2.2.1;Photolithography;15
1.4.1.3.2.2.2;Soft Lithography;16
1.4.1.3.2.2.2.1;Microcontact Printing;16
1.4.1.3.2.2.3;Microtransfer Molding;16
1.4.1.3.2.2.4;Molding in Capillaries (Capillary Force Lithography);23
1.4.1.3.2.2.5;Scanning Probe Lithography;23
1.4.1.3.2.3;1.3.2.3 Electrospinning;23
1.4.1.4;1.4 Clinical Applications;24
1.4.1.4.1;1.4.1 Micro and Nanotechnologies in the Development of Enhanced Constructs for Tissue Engineering;25
1.4.1.4.2;1.4.2 Towards 3D Micro and Nanofabricated Structures;27
1.4.1.4.3;1.4.3 Towards In Vivo Microenvironment: Microbioreactors;28
1.4.1.5;1.5 Expert Opinion;29
1.4.1.6;1.6 Five-Year Perspective;30
1.4.1.7;1.7 Limitations/Critical View;30
1.4.1.8;1.8 Conclusion/Summary;31
1.4.1.9;Suggested Readings with Abstracts;31
1.4.1.10;References;32
1.4.2;2: Biomimetic Scaffolds in Tissue Engineering;37
1.4.2.1;2.1 Introduction;37
1.4.2.2;2.2 Aims of Biomimetics in Tissue Engineering;37
1.4.2.3;2.3 State-of-the-Art Biomimetic Materials;38
1.4.2.4;2.4 Clinical Applications;42
1.4.2.5;2.5 Expert Opinion;42
1.4.2.6;2.6 Five-Year Perspective;43
1.4.2.7;2.7 Limitations/Critical View;43
1.4.2.8;2.8 Conclusion;43
1.4.2.9;Suggested Reading;43
1.4.2.10;References;44
1.4.3;3: Natural and Synthetic Scaffolds;46
1.4.3.1;3.1 Introduction;46
1.4.3.2;3.2 Aim of the Discipline;46
1.4.3.2.1;3.2.1 Tissue Engineering ECM;46
1.4.3.2.2;3.2.2 Native ECM;47
1.4.3.2.3;3.2.3 ECM Analog Scaffolds;48
1.4.3.3;3.3 State of the Art;49
1.4.3.3.1;3.3.1 Synthetic Scaffolds;49
1.4.3.3.1.1;3.3.1.1 Poly(Glycolic Acid);50
1.4.3.3.1.2;3.3.1.2 Poly(Lactic Acid);51
1.4.3.3.1.3;3.3.1.3 Poly(Lactide-Co-Glycolide);52
1.4.3.3.1.4;3.3.1.4 Polydioxanone;53
1.4.3.3.1.5;3.3.1.5 Polycaprolactone;53
1.4.3.3.1.6;3.3.1.6 Poly(Ethylene Glycol)/Poly(Ethylene Oxide);53
1.4.3.3.2;3.3.2 Natural Scaffolds;53
1.4.3.3.2.1;3.3.2.1 Collagen;54
1.4.3.3.2.2;3.3.2.2 Gelatin;55
1.4.3.3.2.3;3.3.2.3 Elastin;55
1.4.3.3.2.4;3.3.2.4 Fibrinogen;56
1.4.3.3.2.5;3.3.2.5 Silk;57
1.4.3.3.2.6;3.3.2.6 Acellular Matrix and Submucosa;57
1.4.3.3.3;3.3.3 Fabrication Techniques;58
1.4.3.3.3.1;3.3.3.1 Electrospinning;58
1.4.3.3.3.2;3.3.3.2 Phase Separation;59
1.4.3.3.3.2.1;Liquid-Liquid Phase Separation;61
1.4.3.3.3.2.2;Solid-Liquid Phase Separation;62
1.4.3.3.3.3;3.3.3.3 Self-Assembly;63
1.4.3.3.3.4;3.3.3.4 Leaching Techniques;64
1.4.3.3.3.5;3.3.3.5 Computer-Aided Design Techniques;64
1.4.3.4;3.4 Clinical Application;65
1.4.3.5;3.5 Limitations/Critical View;66
1.4.3.6;3.6 Expert Opinion;66
1.4.3.7;3.7 Five-Year Perspective;67
1.4.3.8;3.8 Conclusion/Summary;68
1.4.3.9;Literature with Abstracts;68
1.4.3.10;Suggested Readings with Abstracts;69
1.4.3.11;References;69
1.4.4;4: Pluripotent Stem Cells: Sources and Characterization;73
1.4.4.1;4.1 Introduction;73
1.4.4.1.1;4.1.1 The Promise of Pluripotent Stem Cells in Tissue Engineering;73
1.4.4.1.2;4.1.2 Challenges Facing Implementing Human Pluripotent Stem Cells in Engineered Tissue;73
1.4.4.2;4.2 Aim of the Discipline;74
1.4.4.3;4.3 State of the Art;74
1.4.4.3.1;4.3.1 Human Embryonic Stem Cell Derivation;74
1.4.4.3.1.1;4.3.1.1 Derivation of Human Embryonic Stem Cells Without Embryo Destruction;75
1.4.4.3.2;4.3.2 Human Induced Pluripotent Stem Cell Derivation;75
1.4.4.3.2.1;4.3.2.1 Pluripotency Reprogramming Factors;75
1.4.4.3.2.2;4.3.2.2 Inducing Pluripotency Through Nonviral Methods;76
1.4.4.3.2.3;4.3.2.3 Somatic Cell Sources for Human-Induced Pluripotent Stem Cells;77
1.4.4.3.3;4.3.3 Characterizing Pluripotent Human Stem Cells;77
1.4.4.3.3.1;4.3.3.1 Demonstrating Self-Renewal Potential;78
1.4.4.3.3.2;4.3.3.2 Demonstrating Pluripotency;78
1.4.4.3.3.3;4.3.3.3 Differentiation Potential;78
1.4.4.3.3.4;4.3.3.4 Marker Expression;78
1.4.4.3.3.5;4.3.3.5 Epigenetics;80
1.4.4.3.4;4.3.4 Pluripotent Stem Cell Culture;80
1.4.4.3.4.1;4.3.4.1 Feeder Cultures;80
1.4.4.3.4.2;4.3.4.2 Defined Culture Media;80
1.4.4.4;4.4 Clinical Application;81
1.4.4.5;4.5 Expert Opinion;82
1.4.4.5.1;4.5.1 Cell Source;82
1.4.4.5.2;4.5.2 Cell Characterization;82
1.4.4.5.3;4.5.3 Pluripotent Stem Cell Culture;82
1.4.4.6;4.6 Five-Year Perspective;82
1.4.4.6.1;4.6.1 The Future of Pluripotent Stem Cell Derivation, Characterization, and Culture;82
1.4.4.6.2;4.6.2 Applications of Pluripotent Stem Cells in Engineered Tissues;83
1.4.4.7;4.7 Limitations;83
1.4.4.8;4.8 Conclusion;83
1.4.4.9;Suggested Reading;84
1.4.4.10;References;84
1.4.5;5: Adult Stem Cells: Sources and Characterization;87
1.4.5.1;5.1 Introduction;87
1.4.5.2;5.2 Aim of the Discipline;88
1.4.5.3;5.3 State of the Art;88
1.4.5.3.1;5.3.1 Micro-RNA (miRNA);88
1.4.5.3.2;5.3.2 Aging;88
1.4.5.3.3;5.3.3 iPS Cells (Induced Pluripotent Stem Cells);88
1.4.5.4;5.4 Stem Cells and Clinical Applications;90
1.4.5.4.1;5.4.1 HSC (Hematopoietic Stem Cells);90
1.4.5.4.2;5.4.2 Umbilical Cord Blood (UCB);90
1.4.5.4.3;5.4.3 MSC (Mesenchymal Stem Cell, Multipotent Stromal Cell);90
1.4.5.4.3.1;5.4.3.1 Adipose-Derived Stem Cell (ADSC);91
1.4.5.4.4;5.4.4 Stem Cells in the Epidermis and Hair Follicle;91
1.4.5.4.5;5.4.5 Muscle-Derived Stem Cells;91
1.4.5.4.6;5.4.6 Cardiac Stem/Progenitor Cells;92
1.4.5.4.7;5.4.7 Neural Stem Cells;92
1.4.5.5;5.5 Expert Opinions;92
1.4.5.5.1;5.5.1 Label-Retaining Cells;92
1.4.5.5.2;5.5.2 SP Cells (Side Population Cells);92
1.4.5.5.3;5.5.3 The MSC Niche: The Pericyte;93
1.4.5.6;5.6 Five Year Perspective;93
1.4.5.6.1;5.6.1 Immunomodulation;93
1.4.5.6.2;5.6.2 Anticancer Therapy;94
1.4.5.6.3;5.6.3 iPS Cells;94
1.4.5.6.4;5.6.4 Engineered Skin;94
1.4.5.7;5.7 Limitations/Critical View;94
1.4.5.7.1;5.7.1 The Risk of Transformation;94
1.4.5.8;5.8 Conclusion/Summary;94
1.4.5.9;5.9 Literature with Abstracts;94
1.4.5.10;References;95
1.4.6;6: Isolation and Growth of Stem Cells;97
1.4.6.1;6.1 Introduction;97
1.4.6.2;6.2 Aim of the Discipline;97
1.4.6.3;6.3 State of the Art;97
1.4.6.3.1;6.3.1 Use of Human Serum, Platelet Lysates, and Serum-Free Supplements;100
1.4.6.4;6.4 Manufacturing Issues;104
1.4.6.4.1;6.4.1 Point of Care Generation vs. Culture-Expanded Cells: Pros and Cons;104
1.4.6.4.2;6.4.2 Lot Quality Assurance/Quality Control;104
1.4.6.4.3;6.4.3 Staff Protocols and Equipment and Reagent Certification;105
1.4.6.4.4;6.4.4 Cell Processing Devices;105
1.4.6.5;6.5 Clinical Applications and On-Going Human Trials;105
1.4.6.5.1;6.5.1 Regenerative Medical Clinicaltrials.Gov Searching Under Mesenchymal Stem Cells ;106
1.4.6.5.2;6.5.2 Regenerative Medical Clinicaltrials.Gov Search Under Adipose Stem Cells ;111
1.4.6.5.3;6.5.3 Regenerative Medical Clinicaltrials.Gov Searching Under Skeletal Muscle Stem Cells ;112
1.4.6.6;6.6 Expert Opinion;112
1.4.6.7;6.7 Five Year Perspective;112
1.4.6.8;6.8 Limitations/Critical View;112
1.4.6.9;6.9 Conclusions/Summary;113
1.4.6.10;References;113
1.4.7;7: Differentiation and Plasticity of Stem Cells for Tissue Engineering;116
1.4.7.1;7.1 Introduction;116
1.4.7.2;7.2 Differentiation;116
1.4.7.2.1;7.2.1 The Role of Local Environment in Differentiation;120
1.4.7.2.1.1;7.2.1.1 Niche: Extracellular Matrix;120
1.4.7.2.1.2;7.2.1.2 Humoral Factors;120
1.4.7.2.1.3;7.2.1.3 Exchange of MicroRNA;120
1.4.7.3;7.3 Plasticity;120
1.4.7.4;7.4 Stem Cells for Tissue Engineering;121
1.4.7.4.1;7.4.1 Stem Cells for Cardiac Repair;121
1.4.7.4.2;7.4.2 Transdifferentiation;123
1.4.7.4.3;7.4.3 Paracrine Mechanisms;123
1.4.7.4.4;7.4.4 MSCs for Soft Tissue Repair;123
1.4.7.5;7.5 Future Perspectives;129
1.4.7.6;References;130
1.4.8;8: Animal Models for the Evaluation of Tissue Engineering Constructs;134
1.4.8.1;8.1 Introduction;134
1.4.8.2;8.2 Aim of the Discipline;136
1.4.8.3;8.3 State of the Art;137
1.4.8.3.1;8.3.1 Animal Models Used in Dentistry;137
1.4.8.3.2;8.3.2 Rodent-Mouse Model;137
1.4.8.3.3;8.3.3 Rodent-Rat Model;139
1.4.8.3.4;8.3.4 Rabbit Model;141
1.4.8.3.5;8.3.5 Canine (Dog) Model;143
1.4.8.3.6;8.3.6 Sheep and Goat Models;146
1.4.8.3.7;8.3.7 Porcine (Pig) Model;149
1.4.8.3.8;8.3.8 Primate (Monkey) Model;150
1.4.8.4;8.4 Clinical Application;151
1.4.8.5;8.5 Expert Opinion;151
1.4.8.6;8.6 5-Year Perspective;152
1.4.8.7;8.7 Limitations/Critical View;152
1.4.8.8;8.8 Conclusions/Summary;152
1.4.8.9;8.9 Literature with Abstracts;153
1.4.8.10;Suggested Readings with Abstracts;153
1.4.8.11;References;154
1.4.9;9: Biomedical Imaging and Image Processing in Tissue Engineering;158
1.4.9.1;9.1 Introduction;158
1.4.9.2;9.2 Light Transportation Model;159
1.4.9.2.1;9.2.1 Radiative Transport Equation;160
1.4.9.2.2;9.2.2 Diffusion Approximation;160
1.4.9.2.3;9.2.3 Simplified Spherical Harmonics Model;161
1.4.9.2.4;9.2.4 Phase Approximation for RTE;162
1.4.9.3;9.3 Bioluminescence Tomography;163
1.4.9.3.1;9.3.1 Overview of Bioluminescence Tomography;163
1.4.9.3.2;9.3.2 Bioluminescence Imaging System;166
1.4.9.3.2.1;9.3.2.1 Multiview and Multispectral Bioluminescence Imaging System;167
1.4.9.3.3;9.3.3 Bioluminescence Tomography Algorithm;170
1.4.9.3.3.1;9.3.3.1 Objective Function;170
1.4.9.3.3.2;9.3.3.2 Stochastic Algorithm;171
1.4.9.3.3.3;9.3.3.3 Multispectral BLT;171
1.4.9.3.3.4;9.3.3.4 Temperature-Modulated Bioluminescence Tomography;172
1.4.9.3.4;9.3.4 Discussion;173
1.4.9.4;9.4 Fluorescence Imaging;173
1.4.9.4.1;9.4.1 Fluorescence Tomography;174
1.4.9.4.1.1;9.4.1.1 Fluorescence Tomography Algorithm;174
1.4.9.4.1.2;9.4.1.2 Multispectral FMT;175
1.4.9.4.2;9.4.2 Discussion;176
1.4.9.5;9.5 Five-Year Perspective;177
1.4.9.6;Suggested Readings with Abstracts;177
1.4.9.7;References;179
1.4.10;10: Bioreactors for Tissue Engineering;182
1.4.10.1;10.1 Introduction;182
1.4.10.2;10.2 Aim of the Discipline;182
1.4.10.3;10.3 State of the Art;184
1.4.10.4;10.4 Clinical Application;191
1.4.10.5;10.5 Expert Opinion;195
1.4.10.6;10.6 Five-Year Perspective;195
1.4.10.7;10.7 Limitations/Critical View;197
1.4.10.8;10.8 Conclusion/Summary;198
1.4.10.9;Suggested Readings;198
1.4.10.10;References;198
1.5;Part II: Tissue Engineering of Organs;201
1.5.1;11: Issues in Bioartificial Liver Support Therapy for Acute Liver Failure;202
1.5.1.1;11.1 Introduction;202
1.5.1.2;11.2 Aim of the Discipline;203
1.5.1.2.1;11.2.1 Membranes and Compartmentalization;205
1.5.1.2.2;11.2.2 Hepatic Cell Source;205
1.5.1.2.3;11.2.3 Tissue Engineering with Hepatocytes;206
1.5.1.2.3.1;11.2.3.1 Monolayer Culture;206
1.5.1.2.3.2;11.2.3.2 Spheroid Suspension Culture;206
1.5.1.2.3.3;11.2.3.3 Three-Dimensional Culture;207
1.5.1.3;11.3 State of the Art;207
1.5.1.3.1;11.3.1 Perfusion;207
1.5.1.3.2;11.3.2 Mass Transport;207
1.5.1.4;11.4 Clinical Application;208
1.5.1.4.1;11.4.1 Medical Therapies;208
1.5.1.4.2;11.4.2 Extracorporeal Liver Support;208
1.5.1.4.2.1;11.4.2.1 Detoxification (Artificial Liver) Devices;209
1.5.1.4.2.2;11.4.2.2 Metabolic, Cell-Based (Bioartificial Liver) Devices;209
1.5.1.4.3;11.4.3 Cell Transplantation;210
1.5.1.5;11.5 Expert Opinion;210
1.5.1.5.1;11.5.1 Perfusion;210
1.5.1.5.2;11.5.2 Mass Transport;211
1.5.1.5.3;11.5.3 Membranes and Compartmentalization;211
1.5.1.5.4;11.5.4 Hepatic Cell Source;212
1.5.1.6;11.6 Five-Year Perspective;212
1.5.1.7;11.7 Limitations/Critical View;213
1.5.1.8;11.8 Conclusions/Summary;215
1.5.1.9;Suggested Readings;216
1.5.1.10;References;216
1.5.2;12: Central Nervous System;221
1.5.2.1;12.1 Introduction;222
1.5.2.2;12.2 Aim of the Discipline;222
1.5.2.3;12.3 State of the Art;222
1.5.2.3.1;12.3.1 Pathophysiology of Traumatic Spinal Cord Injury;222
1.5.2.3.1.1;12.3.1.1 Myelin-Associated Inhibitors;224
1.5.2.3.1.2;12.3.1.2 Astroglial Scarring and Axon Growth-Repulsive Molecules;224
1.5.2.3.1.3;12.3.1.3 Other Axon Growth-Inhibitory Molecules;225
1.5.2.3.1.4;12.3.1.4 Spontaneous Axon Sprouting and Regeneration;225
1.5.2.3.2;12.3.2 Design of Implantable Biomaterials for SCI;225
1.5.2.3.2.1;12.3.2.1 Hollow Conduits;225
1.5.2.3.2.2;12.3.2.2 Hydrogels;227
1.5.2.3.2.3;12.3.2.3 Topographical Cues and Patterning;227
1.5.2.3.2.4;12.3.2.4 Nanofibres;228
1.5.2.3.2.5;12.3.2.5 General Considerations for Implantable Biomaterials for CNS Applications;228
1.5.2.3.3;12.3.3 Biomaterials Developed for SCI: Natural Polymers;229
1.5.2.3.3.1;12.3.3.1 Collagen;229
1.5.2.3.3.2;12.3.3.2 Fibronectin;230
1.5.2.3.3.3;12.3.3.3 Fibrin;230
1.5.2.3.3.4;12.3.3.4 Alginate;230
1.5.2.3.3.5;12.3.3.5 Agarose;231
1.5.2.3.3.6;12.3.3.6 Chitosan;231
1.5.2.3.3.7;12.3.3.7 Poly-b-hydroxybutyrate (PHB);231
1.5.2.3.3.8;12.3.3.8 Hyaluronic Acid;232
1.5.2.3.4;12.3.4 Synthetic Polymers;232
1.5.2.3.4.1;12.3.4.1 Poly(-Hydroxy Acids);232
1.5.2.3.4.2;12.3.4.2 Poly-(Acrylonitrile-Co-Vinylchloride);233
1.5.2.3.4.3;12.3.4.3 Poly(2-Hydroxyethyl Methacrylate);233
1.5.2.3.4.4;12.3.4.4 Polyethylene Glycol;234
1.5.2.3.4.5;12.3.4.5 Poly[N-(2-Hydroxypropyl)Methacrylamide;234
1.5.2.3.4.6;12.3.4.6 Self-Assembling Nanofibre Scaffolds;234
1.5.2.4;12.4 Clinical Application;235
1.5.2.5;12.5 Expert Opinion;236
1.5.2.6;12.6 Five-Year Perspective;236
1.5.2.7;12.7 Limitations/Critical View;237
1.5.2.8;12.8 Conclusion/Summary;237
1.5.2.9;Suggested Readings with Abstracts;237
1.5.2.10;References;239
1.5.3;13: Tissue Engineering for Peripheral Nerve Regeneration;245
1.5.3.1;13.1 Introduction;245
1.5.3.1.1;13.1.1 Neurobiology of Peripheral Nerve Injury;246
1.5.3.1.1.1;13.1.1.1 Peripheral Nerve Anatomy;246
1.5.3.1.1.2;13.1.1.2 Injury Events: Inflammatory, Anterograde, Retrograde (including death), Phenotypic Change;246
1.5.3.1.2;13.1.2 Neurobiology of Nerve Regeneration After Repair;247
1.5.3.1.3;13.1.3 Summary of the Requirements for Optimal Nerve Repair;248
1.5.3.2;13.2 Aim of the Discipline: The Tissue-Engineered Neurosynthesis;248
1.5.3.3;13.3 State of the Art: Tissue Engineering Technologies for Peripheral Nerve Repair;249
1.5.3.3.1;13.3.1 Entubulation /Wraparound Repair;249
1.5.3.3.2;13.3.2 Gap Repair: Extending the Entubulation Concept to the Nerve Conduit Tube;250
1.5.3.3.2.1;13.3.2.1 Clinical Background: Nerve Graft Repair;250
1.5.3.3.2.2;13.3.2.2 The Nerve Conduit: Initial Experimental and Clinical Constructs;250
1.5.3.3.2.3;13.3.2.3 Refining the Nerve Conduit as a Biodynamic Construct: Matrix;251
1.5.3.3.2.4;13.3.2.4 Refining the Nerve Conduit as a Biodynamic Construct: Therapeutic Delivery of Cultured Schwann Cells;252
1.5.3.3.2.5;13.3.2.5 Refining the Nerve Conduit as a Biodynamic Construct: Therapeutic Delivery of Stem Cells;253
1.5.3.3.2.6;13.3.2.6 Refining the Nerve Conduit as a Biodynamic Construct: Therapeutic Delivery of Exogenous Growth Factors;253
1.5.3.4;13.4 Clinical Application;254
1.5.3.5;13.5 Expert Opinion and 5-Year Perspective;254
1.5.3.6;13.6 Limitations/Critical View;255
1.5.3.7;13.7 Conclusions/Summary;255
1.5.3.8;References;255
1.5.4;14: Tissue Engineering of Blood Vessels: How to Make a Graft;263
1.5.4.1;14.1 Introduction;263
1.5.4.2;14.2 Aim of the Discipline;263
1.5.4.2.1;14.2.1 Cell Sources for Vascular Tissue Engineering;265
1.5.4.2.2;14.2.2 Scaffolds for Vascular Tissue Engineering;266
1.5.4.2.3;14.2.3 Vessel Reactors for Vascular Tissue Engineering;266
1.5.4.3;14.3 State of the Art and History of Tissue-Engineered Blood Vessels;267
1.5.4.3.1;14.3.1 Natural Scaffolds;267
1.5.4.3.2;14.3.2 Permanent Synthetic Scaffolds;267
1.5.4.3.3;14.3.3 Biodegradable Synthetic Scaffolds;269
1.5.4.3.4;14.3.4 Nonscaffold-Based Tissue-Engineered Blood Vessels;270
1.5.4.4;14.4 Clinical Application: An Example;270
1.5.4.5;14.5 Expert Opinion;271
1.5.4.6;14.6 Five-Year Perspective;271
1.5.4.7;14.7 Limitations/Critical View;272
1.5.4.8;14.8 Conclusion/Summary;272
1.5.4.9;Suggested Readings with Abstracts;272
1.5.4.10;References;275
1.5.5;15: Biohybrid Strategies for Vascular Grafts;279
1.5.5.1;15.1 Introduction;279
1.5.5.1.1;15.1.1 Current Status of Vascular Grafts;279
1.5.5.1.2;15.1.2 Failure Mechanism;280
1.5.5.2;15.2 Aim of the Discipline;282
1.5.5.3;15.3 State of the Art: Biohybrid Strategies for Synthetic Grafts;283
1.5.5.3.1;15.3.1 Modification with Other Materials to Decrease Thrombogenicity;283
1.5.5.3.1.1;15.3.1.1 Coating of Grafts with Synthetic Materials;283
1.5.5.3.1.1.1;Carbon;283
1.5.5.3.1.1.2;Polyethylene Glycol;284
1.5.5.3.1.1.3;Phosphatidylcholine;284
1.5.5.3.1.1.4;Poly(Diol Citrate) (PDC);285
1.5.5.3.1.2;15.3.1.2 Coating of Grafts with Natural Materials;285
1.5.5.3.1.2.1;Albumin;285
1.5.5.3.1.2.2;Elastin;286
1.5.5.3.2;15.3.2 Protein and Drug Immobilization and Release;286
1.5.5.3.2.1;15.3.2.1 Agents That Inhibit Thrombin;286
1.5.5.3.2.2;15.3.2.2 Agents That Inhibit Platelet Activation;287
1.5.5.3.2.3;15.3.2.3 Agents That Inhibit Neo-Intimal Hyperplasia;287
1.5.5.3.2.4;15.3.2.4 Nitric Oxide;288
1.5.5.3.2.5;15.3.2.5 Combinatory Approaches;289
1.5.5.3.3;15.3.3 Stimulation of Endothelial Cell Monolayer Formation;290
1.5.5.3.3.1;15.3.3.1 In Situ Endothelialization;290
1.5.5.3.3.1.1;Extracellular Matrix Components;291
1.5.5.3.3.1.2;Growth Factors;292
1.5.5.3.3.1.3;Specific EPC Capture;293
1.5.5.3.3.2;15.3.3.2 Endothelial Retention After Ex Vivo Endothelialization;293
1.5.5.3.3.2.1;Alternative Cell Sources;294
1.5.5.3.3.2.2;Genetically Engineered Cells;295
1.5.5.3.3.2.3;Other;296
1.5.5.3.4;15.3.4 Gene Therapy for Vascular Grafts;296
1.5.5.3.4.1;15.3.4.1 Current Status of Genetic Engineering for Vascular Grafts;296
1.5.5.3.4.2;15.3.4.2 Prospects;297
1.5.5.4;15.4 State of the Art: Tissue Engineering of Small-Diameter Blood Vessels;298
1.5.5.4.1;15.4.1 The Central Paradigm;298
1.5.5.4.2;15.4.2 Design Criteria;299
1.5.5.4.3;15.4.3 Current Status;300
1.5.5.4.3.1;15.4.3.1 In Vivo Tissue Regeneration Methods;300
1.5.5.4.3.2;15.4.3.2 In Vitro Tissue Regeneration Methods;301
1.5.5.4.3.3;15.4.3.3 Tissue Engineered Blood Vessels in the Clinical Setting;302
1.5.5.5;15.5 Clinical Applications;302
1.5.5.6;15.6 Expert Opinion and Limitations;303
1.5.5.6.1;15.6.1 Biohybrid Strategies for Synthetic Grafts;303
1.5.5.6.2;15.6.2 Stimulation of EC Monolayer Formation;305
1.5.5.6.3;15.6.3 Gene Therapy;305
1.5.5.6.4;15.6.4 Tissue Engineering of Small-Diameter Blood Vessels;306
1.5.5.7;15.7 Five-Year Perspective;307
1.5.5.8;15.8 Summary and Conclusion;307
1.5.5.9;Suggested Readings;308
1.5.5.10;References;309
1.5.6;16: Heart and Cardiovascular Engineering;317
1.5.6.1;16.1 Cardiac Engineering;317
1.5.6.1.1;16.1.1 Heart Valves;318
1.5.6.1.2;16.1.2 Myocardial Tissue;320
1.5.6.1.2.1;16.1.2.1 Matrix Scaffolds;322
1.5.6.1.2.2;16.1.2.2 Cell Sources;322
1.5.6.1.3;16.1.3 Cardiac Cell Therapy;323
1.5.6.1.3.1;16.1.3.1 Skeletal Muscle Cells;323
1.5.6.1.3.2;16.1.3.2 Bone Marrow Stem Cells;323
1.5.6.1.3.3;16.1.3.3 Cellular Therapies in Cardiac Arrhythmias;324
1.5.6.2;16.2 Blood Vessel Engineering;325
1.5.6.2.1;16.2.1 Biological Vessel Grafts;325
1.5.6.2.2;16.2.2 Alloplastic Vessel Grafts;326
1.5.6.2.3;16.2.3 Hybrid Vessel Grafts;327
1.5.6.2.4;16.2.4 Conclusion;328
1.5.6.3;References;329
1.5.7;17: Tissue Engineering of Organs: Eye/Retina;334
1.5.7.1;17.1 Introduction;334
1.5.7.2;17.2 Aim of the Discipline;334
1.5.7.2.1;17.2.1 Restoring Damaged Retina Using Embryonic Retinal Tissue;334
1.5.7.2.2;17.2.2 In Vitro Engineering of Retinal Cell Types;335
1.5.7.2.3;17.2.3 Transplantation of Cells Isolated from the Postnatal Retina of the Mouse;337
1.5.7.3;17.3 State of the art;337
1.5.7.3.1;17.3.1 Polymer and RPC Composites for Retinal Transplantation;337
1.5.7.3.2;17.3.2 In Vitro Multilayer Film and Reaggregation Approaches;339
1.5.7.4;17.4 Clinical Application;339
1.5.7.5;17.5 Five-Year Perspective;340
1.5.7.6;17.6 Limitations/Critical View;341
1.5.7.6.1;17.6.1 Creating Optimal Retinal Environmental Conditions for Transplantation;341
1.5.7.7;17.7 Conclusion/Summary;343
1.5.7.8;References;343
1.6;Part III: Tissue Types;346
1.6.1;18: Engineering of Adipose Tissue;347
1.6.1.1;18.1 Introduction;347
1.6.1.1.1;18.1.1 White Adipose Tissue;347
1.6.1.1.2;18.1.2 The Clinical Need for Adipose Tissue Engineering Applications;348
1.6.1.2;18.2 Aims of the Discipline;349
1.6.1.3;18.3 State of the Art;349
1.6.1.3.1;18.3.1 Cells;349
1.6.1.3.1.1;18.3.1.1 Mesenchymal Stem Cells;349
1.6.1.3.1.2;18.3.1.2 Preadipocytes and Adipocytes;350
1.6.1.3.1.3;18.3.1.3 Inflammatory Cells;350
1.6.1.3.2;18.3.2 Extracellular Matrix;350
1.6.1.3.2.1;18.3.2.1 Biopolymers;351
1.6.1.3.2.2;18.3.2.2 Hydrogels;351
1.6.1.3.2.3;18.3.2.3 Microspheres;352
1.6.1.3.3;18.3.3 Vascularization;353
1.6.1.3.4;18.3.4 Growth Factors and Cytokines;356
1.6.1.3.5;18.3.5 The Concept of Space;356
1.6.1.3.6;18.3.6 The Inductive Theory of Adipose Tissue Engineering In Vivo;357
1.6.1.4;18.4 Clinical Application;358
1.6.1.5;18.5 Expert Opinion;358
1.6.1.6;18.6 Five-Year Perspective;359
1.6.1.7;18.7 Limitations;359
1.6.1.8;18.8 Conclusion;360
1.6.1.9;18.9 Suggested Readings with Abstracts;360
1.6.1.10;References;363
1.6.2;19: Blood Substitutes;369
1.6.2.1;19.1 Introduction;369
1.6.2.2;19.2 Aim of the Discipline;370
1.6.2.3;19.3 State of the Art;371
1.6.2.3.1;19.3.1 Perfluorocarbons;371
1.6.2.3.1.1;19.3.1.1 First-Generation PFC;372
1.6.2.3.1.2;19.3.1.2 Second-Generation PFC;373
1.6.2.3.2;19.3.2 Hemoglobin Based Oxygen Carriers;374
1.6.2.3.2.1;19.3.2.1 First-Generation HBOC;375
1.6.2.3.2.2;19.3.2.2 Second-Generation HBOC;375
1.6.2.3.2.2.1;Crosslink of a-Subunits;375
1.6.2.3.2.2.2;Pyridoxylation;376
1.6.2.3.2.2.3;Conjugation;376
1.6.2.3.2.2.4;Genetically Engineered Hb;376
1.6.2.3.2.2.5;Polymerized Human Hb;377
1.6.2.3.2.2.6;Polymerized Bovine Hb;377
1.6.2.3.2.2.7;Maleimide-Activated PEG Modified Hb (MP4);377
1.6.2.3.3;19.3.3 Liposome Encapsulated Hb;378
1.6.2.4;19.4 Clinical Application;380
1.6.2.4.1;19.4.1 Hemorrhagic Shock;380
1.6.2.4.1.1;19.4.1.1 PFC;380
1.6.2.4.1.2;19.4.1.2 HBOC;381
1.6.2.4.1.3;19.4.1.3 Liposome Encapsulated Hemoglobin;382
1.6.2.4.2;19.4.2 Treatment of Acute Intraoperative Blood Loss;382
1.6.2.4.2.1;19.4.2.1 PFC;382
1.6.2.4.2.2;19.4.2.2 HBOC;382
1.6.2.4.2.3;19.4.2.3 Liposome Encapsulated Hemoglobin;383
1.6.2.4.3;19.4.3 Use as a Transfusion Alternative in Hematological Disorders;383
1.6.2.4.4;19.4.4 Potential Transfusion Alternative for Jehovah s Witnesses;384
1.6.2.5;19.5 Expert Opinion;384
1.6.2.6;19.6 Five-Year Perspective;385
1.6.2.7;19.7 Limitations/Critical View;386
1.6.2.8;19.8 Conclusion/Summary;387
1.6.2.9;Suggested Readings;387
1.6.2.9.1;Review Articles;387
1.6.2.9.2;Textbooks;388
1.6.2.10;References;388
1.6.3;20: Tissue Engineering of Blood Vessels: How to Make a Graft;392
1.6.3.1;20.1 Introduction;392
1.6.3.2;20.2 Expert Opinion;393
1.6.3.3;20.3 Biology of Neovascularization;394
1.6.3.3.1;20.3.1 Mechanism of Neovascularization;394
1.6.3.3.2;20.3.2 Angiogenic Growth Factors;396
1.6.3.3.3;20.3.3 Cell/Matrix Interactions in Neovascularization;399
1.6.3.4;20.4 Engineering Microvascular Networks;400
1.6.3.4.1;20.4.1 Cellular Patterning;400
1.6.3.4.1.1;20.4.1.1 Effects of Scaffold Materials on Neovascularization;401
1.6.3.4.1.2;20.4.1.2 Microfabrication Techniques for Engineering Microvascular Networks;404
1.6.3.4.2;20.4.2 Recruitment of Microvascular Networks by Application of Angiogenic Biomolecules;406
1.6.3.4.2.1;20.4.2.1 Controlled Growth Factor Administration;406
1.6.3.4.2.2;20.4.2.2 Utilization of Mesenchymal Mural Cells to Enhance Microvascular Network Formation;410
1.6.3.4.2.3;20.4.2.3 Dynamic Biomechanical Stimulation;412
1.6.3.4.2.4;20.4.2.4 Postimplantation Remodeling and In Vivo Recruitment of Microvascular Networks;414
1.6.3.4.2.5;20.4.2.5 Progenitor Cells;416
1.6.3.5;20.5 Five Year Perspective;418
1.6.3.6;20.6 Limitations/Critical Views;419
1.6.3.7;20.7 Summary;420
1.6.3.8;References;420
1.6.4;21: Bone Tissue Engineering;428
1.6.4.1;21.1 Introduction;428
1.6.4.2;21.2 Aim of the Discipline;432
1.6.4.3;21.3 State of the Art;433
1.6.4.4;21.4 Clinical Application;436
1.6.4.4.1;21.4.1 Orthopedic and reconstructive surgery;436
1.6.4.4.2;21.4.2 Oral and Maxillofacial Surgery;441
1.6.4.5;21.5 Expert Opinion;441
1.6.4.6;21.6 Five-Year Perspective;444
1.6.4.6.1;21.6.1 In Vivo Bone Engineering;444
1.6.4.6.2;21.6.2 Stimulation of New Candidate Pathways;445
1.6.4.6.3;21.6.3 Design and Fabrication of Scaffolds;446
1.6.4.6.4;21.6.4 Application of Bone Tissue Engineering Platforms to Study Mechanisms of Bone Metastasis;447
1.6.4.6.5;21.6.5 Bone Chip Model vs. Tissue Engineered Bone;448
1.6.4.7;21.7 Limitations/Critical View;450
1.6.4.8;21.8 Conclusion/Summary;451
1.6.4.9;References;451
1.6.5;22: Tissue Engineering of Organs: Brain Tissues;454
1.6.5.1;22.1 Introduction;454
1.6.5.2;22.2 Aim of the Discipline;456
1.6.5.2.1;22.2.1 The Neuronal Niche;456
1.6.5.2.2;22.2.2 Engineering Cellular Microenvironments;457
1.6.5.3;22.3 State of the Art;460
1.6.5.3.1;22.3.1 Exogenous Cell Source;460
1.6.5.3.2;22.3.2 Scaffold Materials;461
1.6.5.3.2.1;22.3.2.1 Hydrogels;466
1.6.5.3.2.2;22.3.2.2 Fibrous Structures;469
1.6.5.3.3;22.3.3 Biofunctionalization;473
1.6.5.3.3.1;22.3.3.1 Bioactive Molecules;473
1.6.5.3.3.2;22.3.3.2 Incorporation of Bioactive Molecules onto Scaffolds;475
1.6.5.3.4;22.3.4 Summary;476
1.6.5.4;22.4 Clinical Application;477
1.6.5.4.1;22.4.1 Parkinson s Disease;477
1.6.5.4.2;22.4.2 Summary;480
1.6.5.5;22.5 Expert Opinion;480
1.6.5.5.1;22.5.1 Challenges in Tissue Engineering for Brain Repair;480
1.6.5.5.2;22.5.2 Current and Future Scaffolds for Brain Repair;481
1.6.5.6;22.6 Five-Year Perspective;482
1.6.5.7;22.7 Limitations/Critical Review;483
1.6.5.8;22.8 Conclusion/Summary;484
1.6.5.9;Suggested Readings;485
1.6.5.10;References;485
1.6.6;23: Engineering Cartilage Tissue;490
1.6.6.1;23.1 Introduction;490
1.6.6.1.1;23.1.1 Adult Articular Cartilage: Composition, Mechanical Properties, and Physiologic Loading;490
1.6.6.1.2;23.1.2 Articular Cartilage: Formation and Maturation;492
1.6.6.2;23.2 Aim of the Discipline;493
1.6.6.2.1;23.2.1 Overview;493
1.6.6.2.2;23.2.2 Cartilage Tissue Engineering Strategies;493
1.6.6.3;23.3 State of the Art;495
1.6.6.3.1;23.3.1 Photopolymerizable Hydrogels;495
1.6.6.3.2;23.3.2 Tailoring Hydrogels to Promote Cartilage Tissue Formation;496
1.6.6.3.3;23.3.3 Hyaluronic Acid: Biologic Relevance, Role in Cartilage, and Hydrogel Formation;498
1.6.6.3.4;23.3.4 Cells Used in Cartilage Repair and Tissue Engineering;498
1.6.6.3.5;23.3.5 Mesenchymal Stem Cells in Cartilage Regeneration;499
1.6.6.3.6;23.3.6 Tissue Engineering of Articular Cartilage with Mechanical Preconditioning;502
1.6.6.3.7;23.3.7 Mechanical Sensitivity of Mesenchymal Progenitor Cells;503
1.6.6.4;23.4 Clinical Application;504
1.6.6.4.1;23.4.1 Articular Cartilage Injury and Repair;504
1.6.6.4.2;23.4.2 Clinical Translation of Engineered Cartilage;505
1.6.6.5;23.5 Expert Opinion;506
1.6.6.6;23.6 Five-Year Perspective;509
1.6.6.7;23.7 Limitations/Critical View;509
1.6.6.8;23.8 Conclusion/Summary;510
1.6.6.9;Suggested Reading with Abstracts;511
1.6.6.10;References;512
1.6.7;24: Pancreatic Tissues;518
1.6.7.1;24.1 Introduction;518
1.6.7.2;24.2 Aims of Pancreatic Tissue Engineering;519
1.6.7.3;24.3 State of the Art Technologies in Pancreatic Tissue Engineering;519
1.6.7.3.1;24.3.1 Sources of Insulin Producing Cells;519
1.6.7.3.1.1;24.3.1.1 Pancreatic b Cells Generated from Embryonic Stem Cells (ESC);520
1.6.7.3.1.2;24.3.1.2 Amniotic Fluid-Derived Stem Cells (AFSC) as a Source for Insulin Producing Pancreatic b Cells;521
1.6.7.3.1.3;24.3.1.3 Progenitor Cells;521
1.6.7.3.1.4;24.3.1.4 Induced Pluripotent Stem Cell (iPS cells);522
1.6.7.3.2;24.3.2 Encapsulation: Strategies to Engineer Bioartificial Pancreatic Tissue;522
1.6.7.3.2.1;24.3.2.1 Pancreatic Islet Cell Encapsulation as Immunoisolation;523
1.6.7.3.2.2;24.3.2.2 Types of Islet Cell Encapsulation;523
1.6.7.3.2.3;24.3.2.3 Geometry of Capsules;524
1.6.7.4;24.4 Clinical Application;525
1.6.7.5;24.5 Expert Opinion;525
1.6.7.6;24.6 Five-Year Perspective;526
1.6.7.7;24.7 Limitations/Critical View;526
1.6.7.8;24.8 Conclusion/Summary;527
1.6.7.9;Suggested Reading with Abstract;528
1.6.7.10;Reference;531
1.6.8;25: Tendons: Engineering of Functional Tissues;534
1.6.8.1;25.1 Introduction;534
1.6.8.2;25.2 Cellular Composition of Tendons;534
1.6.8.3;25.3 Structural Elements of Tendons;535
1.6.8.3.1;25.3.1 Collagen Type I;535
1.6.8.3.2;25.3.2 Other Collagenous Structures of Tendons;537
1.6.8.3.3;25.3.3 Non-Collagenous Constituents of Tendons;537
1.6.8.4;25.4 Tendon Hierarchical Structure;538
1.6.8.5;25.5 Function of Native Tendon;540
1.6.8.6;25.6 Changes in Tendon During Maturation and Ageing;541
1.6.8.7;25.7 Vascular Supply of Tendons;542
1.6.8.8;25.8 Tendon Healing;542
1.6.8.9;25.9 Non-Invasive Strategies;543
1.6.8.10;25.10 Clinical Need and Requirements;544
1.6.8.11;25.11 Approaches Towards Tendon Repair: Autografts, Allografts and Xenografts;545
1.6.8.12;25.12 Approaches Towards Tendon Repair: Synthetic and Natural Biomaterials;546
1.6.8.13;25.13 Approaches Towards Tendon Repair: Collagen-based Biomaterials;548
1.6.8.14;25.14 Conclusions;552
1.6.8.15;References;552
1.6.9;26: Tissue Engineering in Oral and Maxillofacial Surgery (OMFS);570
1.6.9.1;26.1 Introduction;570
1.6.9.2;26.2 Aim of the Discipline;570
1.6.9.2.1;26.2.1 From Resection to Reconstruction to Regeneration;570
1.6.9.3;26.3 State of the Art;571
1.6.9.3.1;26.3.1 Cell-Based Tissue Repair Strategies;571
1.6.9.3.1.1;26.3.1.1 General Principles;571
1.6.9.3.1.2;26.3.1.2 Polymer Cell System;571
1.6.9.3.2;26.3.2 Cell Transplantation Devices;572
1.6.9.3.2.1;26.3.2.1 Coating Technique;573
1.6.9.3.2.2;26.3.2.2 Spraying Technique;573
1.6.9.3.2.3;26.3.2.3 Framing Technique;573
1.6.9.3.2.4;26.3.2.4 Sandwich Technique;573
1.6.9.3.3;26.3.3 Cell Sources, Growth, and Differentiation;574
1.6.9.3.3.1;26.3.3.1 Autologous Cells for Cartilage Regeneration;574
1.6.9.3.3.1.1;Chondroprogenitor Cells;574
1.6.9.3.3.2;26.3.3.2 Autologous Cells for Bone Regeneration;574
1.6.9.3.3.2.1;Osteoprogenitor Cells;574
1.6.9.3.3.2.2;Mesenchymal Stem Cells;575
1.6.9.3.3.3;26.3.3.3 Autologous Cells for Oral Mucosa Regeneration;575
1.6.9.3.3.3.1;Dentoalveolar Tissue Progenitor Cells;575
1.6.9.3.3.3.2;Periodontal Progenitor Cells;575
1.6.9.3.3.3.3;Dental Pulp Progenitor Cells;575
1.6.9.3.3.3.4;Neural Crest-Derived Progenitor Cells;575
1.6.9.3.3.3.5;Salivary Gland Progenitor Cells;576
1.6.9.3.3.3.6;Skeletal Muscle Progenitor Cells;576
1.6.9.3.3.3.7;Placenta-Derived Multipotent Cells;576
1.6.9.3.3.3.8;Embryonic Stem Cells;576
1.6.9.3.4;26.3.4 Bioreactors for Engineering of Structural Tissue;576
1.6.9.3.4.1;26.3.4.1 Stirred Spinner Flask;576
1.6.9.3.4.2;26.3.4.2 Rotating Bioreactors;577
1.6.9.3.4.3;26.3.4.3 Perfusion Bioreactors;577
1.6.9.4;26.4 Experimental and Clinical Applications of Tissue Engineering in OMFS;577
1.6.9.4.1;26.4.1 Cartilage Tissue Engineering;577
1.6.9.4.1.1;26.4.1.1 Experimental Tissue-Engineered Growth of Cartilage;577
1.6.9.4.1.1.1;Cell Concentration Study;577
1.6.9.4.1.1.2;Injectable Cartilage;578
1.6.9.4.1.1.3;Quality Control Using Magnetic Resonance Imaging (MRI);578
1.6.9.4.1.1.4;Biomechanical Testing of New Cartilage Generated by Tissue Engineering;579
1.6.9.4.1.1.5;Facial Implants Generated by Tissue-Engineered Growth of Cartilage;579
1.6.9.4.1.1.6;Transplantation of Neocartilage Created by TE Techniques;582
1.6.9.4.1.2;26.4.1.2 Clinical Applications of Cartilage Engineering in OMFS;582
1.6.9.4.1.2.1;Tissue-Engineered Growth of a Temporomandibular Joint (TMJ) Disk Replacement;582
1.6.9.4.2;26.4.2 Bone Tissue Engineering;584
1.6.9.4.2.1;26.4.2.1 Experimental Tissue-Engineered Growth of Bone;584
1.6.9.4.2.2;26.4.2.2 Clinical Application of Bone Engineering in OMFS;585
1.6.9.4.2.3;26.4.2.3 Bone Regeneration and Reformation;586
1.6.9.4.2.3.1;Platelet-Rich Plasma (PRP);586
1.6.9.4.2.3.2;Bone Morphogenetic Proteins (BMPs);586
1.6.9.4.2.4;26.4.2.4 Guided Tissue Regeneration;587
1.6.9.4.2.4.1;Guided Bone Regeneration;587
1.6.9.4.3;26.4.3 Periodontal Tissue Engineering;587
1.6.9.5;26.5 Expert Opinion;588
1.6.9.6;26.6 Five Year Perspective;589
1.6.9.7;26.7 Limitations/Critical View;589
1.6.9.8;26.8 Conclusion/Summary;589
1.6.9.9;Suggested Readings;590
1.6.9.10;References;590
1.6.10;27: Tissue Engineering of Musculoskeletal Tissue;594
1.6.10.1;27.1 Introduction and Objectives;594
1.6.10.2;27.2 Features of Musculoskeletal Tissues Which Impact Tissue Engineering;594
1.6.10.3;27.3 Bone Tissue;596
1.6.10.3.1;27.3.1 Bone Composition and Structure;596
1.6.10.3.2;27.3.2 Bone Reconstruction and State of the Art;597
1.6.10.3.3;27.3.3 Investigative Approaches to Advance Bone-Tissue Engineering;597
1.6.10.3.3.1;27.3.3.1 Biomaterial Scaffolds;597
1.6.10.3.3.2;27.3.3.2 Growth Factors;598
1.6.10.3.3.3;27.3.3.3 Exogenous Cells;598
1.6.10.3.4;27.3.4 Clinical Applications of Bone-Tissue Engineering;602
1.6.10.3.5;27.3.5 Limitations;603
1.6.10.3.6;27.3.6 Conclusions;603
1.6.10.4;27.4 Cartilage Tissue;603
1.6.10.4.1;27.4.1 Types of Cartilage;603
1.6.10.4.2;27.4.2 Cartilage Cells Isolated for Tissue Engineering;604
1.6.10.4.3;27.4.3 Articular Cartilage Tissue Engineering;604
1.6.10.4.3.1;27.4.3.1 Aim of the Discipline;604
1.6.10.4.3.2;27.4.3.2 State of the Art;605
1.6.10.4.3.3;27.4.3.3 Clinical Applications;609
1.6.10.4.3.4;27.4.3.4 Conclusion;609
1.6.10.4.4;27.4.4 Fibrocartilage;609
1.6.10.4.4.1;27.4.4.1 Meniscus;609
1.6.10.4.4.2;27.4.4.2 Intervertebral Disc, IVD;610
1.6.10.5;27.5 Synovium Tissue;610
1.6.10.5.1;27.5.1 Synovium Composition and Structure;610
1.6.10.5.2;27.5.2 Aim of the Discipline;611
1.6.10.5.3;27.5.3 State of the Art;611
1.6.10.5.4;27.5.4 Conclusion;612
1.6.10.6;27.6 Tendons and Ligaments;612
1.6.10.6.1;27.6.1 Introduction;612
1.6.10.6.2;27.6.2 Aim of the Discipline;613
1.6.10.6.3;27.6.3 State of the Art;613
1.6.10.6.4;27.6.4 Critical View;615
1.6.10.6.5;27.6.5 Conclusion;615
1.6.10.7;27.7 Skeletal Muscle;615
1.6.10.7.1;27.7.1 Introduction;615
1.6.10.7.2;27.7.2 Aim of the Discipline;616
1.6.10.7.3;27.7.3 State of the Art;616
1.6.10.7.4;27.7.4 Critical View;618
1.6.10.7.5;27.7.5 Conclusion;618
1.6.10.8;Reference;618
1.7;Index;622
mehr

Autor

Norbert Pallua is Professor, Chairman and Director of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital, Aachen, Germany. Professor Pallua is recognized to be among the leading Plastic Surgeons in Germany. He is also nominated Honorary Professor and Director of several Universities. Professor Pallua is the author of numerous scientific and clinical publications and is a reviewer for several leading journals. He has been responsible for developing innovative methods of extensive facial reconstruction and has led research into tissue engineering, with a particular focus on soft tissue. Professor Christoph Suschek works in the laboratory of the Department of Plastic Surgery, Hand Surgery, Burn Center at the RWTH University Hospital in Aachen as leading biologist. Professor Suschek is the author or co-author of many journal articles presenting research related to tissue engineering approaches, such as ways in which the induction of inflammation might be used to stimulate adipose tissue formation.
Weitere Artikel von
Suschek, Christoph V.
Hrsg.