Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

New Frontiers of Nanoparticles and Nanocomposite Materials

E-BookPDF1 - PDF WatermarkE-Book
371 Seiten
Englisch
Springer Berlin Heidelbergerschienen am08.07.20142013
The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics.

This monograph focuses on two major groups of nanomaterials, i.e.nanoparticels and nanocomposites.  Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered.  Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties.  The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials.



The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics.

This monograph focuses on two major groups of nanomaterials, i.e.

nanoparticels and nanocomposites.  Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered.  Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties.  The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials.
mehr
Verfügbare Formate
BuchGebunden
EUR160,49
E-BookPDF1 - PDF WatermarkE-Book
EUR106,99

Produkt

KlappentextThe development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics.

This monograph focuses on two major groups of nanomaterials, i.e.nanoparticels and nanocomposites.  Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered.  Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties.  The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials.



The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics.

This monograph focuses on two major groups of nanomaterials, i.e.

nanoparticels and nanocomposites.  Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered.  Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties.  The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials.
Details
Weitere ISBN/GTIN9783642146978
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2014
Erscheinungsdatum08.07.2014
Auflage2013
Reihen-Nr.4
Seiten371 Seiten
SpracheEnglisch
IllustrationenVIII, 371 p.
Artikel-Nr.1722396
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;New Frontiers of Nanoparticles and Nanocomposite Materials;2
1.1;Preface;4
1.2;Contents;5
1.3;Part I Nanoparticles;7
1.3.1;42 Recent Progress in Fabrication of Hollow Nanostructures;8
1.3.1.1;Abstract;8
1.3.1.2;1â¦Introduction;8
1.3.1.3;2â¦Fabrication Routes to Hollow Nanostructures;9
1.3.1.3.1;2.1 Techniques Based on Chemical Routes;9
1.3.1.3.2;2.2 Kirkendall-Effect-Related Methods;16
1.3.1.3.2.1;2.2.1 Hollow Nanoparticles;16
1.3.1.3.2.2;2.2.2 Nanotubes;20
1.3.1.4;3â¦Structural Stability of Hollow Nanostructures at High Temperatures;23
1.3.1.4.1;3.1 Shrinkage of Hollow Oxides;25
1.3.1.4.2;3.2 Transition in Porous Structures of Iron Oxides;28
1.3.1.5;4â¦Summary;32
1.3.1.6;References;33
1.3.2;60 Computer Simulation of Diffusion and Reaction in Metallic Nanoparticles;36
1.3.2.1;Abstract;36
1.3.2.2;1â¦Introduction;36
1.3.2.3;2â¦Hollow Nanospheres;37
1.3.2.3.1;2.1 Formation of Hollow Nanospheres;38
1.3.2.3.2;2.2 Shrinkage of Hollow Nanoparticles;44
1.3.2.4;3â¦Bi-metallic Nanoparticles;50
1.3.2.4.1;3.1 Interdiffusion in Bimetallic Nanoparticles;51
1.3.2.4.1.1;3.1.1 Interdiffusion in a Ag--Ni Bi-metallic Nanoparticle;51
1.3.2.4.1.2;3.1.2 Interdiffusion in a Pd--Ni Bi-metallic Nanoparticle;53
1.3.2.5;4â¦Reaction Synthesis of Intermetallic Nanoparticles;56
1.3.2.5.1;4.1 Formation of NiAl Nanoparticles;57
1.3.2.6;5â¦Outlook;61
1.3.2.7;Acknowledgments;61
1.3.2.8;References;61
1.3.3;63 Controlled Synthesis of Gold Nanorods via Seeded Growth Approach;65
1.3.3.1;Abstract;65
1.3.3.2;1â¦Introduction;66
1.3.3.3;2â¦Experimental Details;67
1.3.3.4;3â¦Results and Discussion;67
1.3.3.5;4â¦Conclusion;74
1.3.3.6;Acknowledgments;75
1.3.3.7;References;75
1.3.4;65 Calculation of Surface Enhanced Raman Scattering in Metal Nanoparticles;77
1.3.4.1;Abstract;77
1.3.4.2;1â¦IntroductionIntroduction;78
1.3.4.3;2â¦Materials and Methods 2 Materials and Methods;79
1.3.4.3.1;2.1 Materials;79
1.3.4.3.2;2.2 Synthesis of Silver Nanoparticles;79
1.3.4.3.3;2.3 Immobilization of Silver Nanoparticles on Glass Substrates;79
1.3.4.3.4;2.4 Raman Spectroscopy;79
1.3.4.3.5;2.5 Fourier Transform Infrared Spectroscopy;80
1.3.4.3.6;2.6 Computational Methods;80
1.3.4.4;3â¦Results and Discussion3 Results and Discussion;80
1.3.4.5;4â¦Conclusions4 Conclusions;85
1.3.4.6;Acknowledgments;85
1.3.4.7;References;85
1.3.5;30 Inorganic--Organic Hybrid Nanoparticles for Medical Applications;88
1.3.5.1;Abstract;88
1.3.5.2;1â¦Introduction;88
1.3.5.3;2â¦Gold (Au);90
1.3.5.3.1;2.1 Introduction;90
1.3.5.3.2;2.2 Synthesis of Gold Nanoparticles;90
1.3.5.3.2.1;2.2.1 Thiolate-Capped Gold Nanoparticles;91
1.3.5.3.2.2;2.2.2 Dendrimer-Protected Gold Nanoparticles;92
1.3.5.3.2.3;2.2.3 Immobilization Through Monolayer Films;92
1.3.5.3.2.4;2.2.4 Post-modification of Gold Nanoparticles;93
1.3.5.3.3;2.3 Gold Nanoparticles for Bioimaging;95
1.3.5.3.3.1;2.3.1 Interaction with Light and Surface Plasmon Resonance;95
1.3.5.3.3.2;2.3.2 Photothermal Imaging and Luminescence;95
1.3.5.3.3.3;2.3.3 Contrast Agent in X-ray Imaging;96
1.3.5.3.4;2.4 Local Heat Induced by Gold Nanoparticles;96
1.3.5.3.4.1;2.4.1 Hyperthermia;97
1.3.5.3.4.2;2.4.2 Heat-Induced Molecular Motion and Delivery;97
1.3.5.3.5;2.5 Gold Nanoparticles-Assisted Drug Delivery;98
1.3.5.3.5.1;2.5.1 Small Drugs Delivery;98
1.3.5.3.5.2;2.5.2 Gold Nanoparticles for Biomolecules Delivery;100
1.3.5.3.5.3;2.5.3 In Vivo Limitations and Targeting;102
1.3.5.3.6;2.6 Gold Nanoparticles-Based Biosensors;102
1.3.5.3.6.1;2.6.1 Nanoscale Surface Plasmon;103
1.3.5.3.6.2;2.6.2 Surface-Enhanced Raman Scattering (SERS);104
1.3.5.3.6.3;2.6.3 Fluorescence Quenching;105
1.3.5.3.6.4;2.6.4 Electrochemical Sensors;106
1.3.5.4;3â¦Iron Oxides (FeOx);107
1.3.5.4.1;3.1 Introduction;107
1.3.5.4.2;3.2 Synthesis Methods for Magnetic Nanoparticles;108
1.3.5.4.2.1;3.2.1 Coprecipitation Methods;108
1.3.5.4.2.2;3.2.2 Microemulsion Method;109
1.3.5.4.2.3;3.2.3 High Thermal Decomposition;110
1.3.5.4.2.4;3.2.4 Synthesis Using Liquid Polyols;111
1.3.5.4.3;3.3 Surface Modification of Iron Oxide Nanoparticles;111
1.3.5.4.4;3.4 Biomedical Applications of Magnetic Nanoparticles;114
1.3.5.4.4.1;3.4.1 Magnetic Nanoparticles as Contrast Agents in MRI;114
1.3.5.4.4.2;3.4.2 Magnetic Hyperthermia;115
1.3.5.4.4.3;3.4.3 Magnetic Drug Targeting (MDT);116
1.3.5.4.4.4;3.4.4 Stem Cell Tracking;116
1.3.5.4.4.5;3.4.5 In Vitro Separation and Purification of Targets;117
1.3.5.5;4â¦Quantum Dots (QDs);117
1.3.5.5.1;4.1 Preparation of QDs;119
1.3.5.5.2;4.2 Coating the QDs;119
1.3.5.5.3;4.3 Surface Modification of QDs;120
1.3.5.5.3.1;4.3.1 Thiols;120
1.3.5.5.3.2;4.3.2 Phosphine and Phosphine Oxide;121
1.3.5.5.3.3;4.3.3 Histidine;121
1.3.5.5.3.4;4.3.4 Aliphatic Chains;122
1.3.5.5.4;4.4 Medical Applications of Surface Functionalized QDs;123
1.3.5.5.4.1;4.4.1 Bioassays Using QDs;123
1.3.5.5.4.2;4.4.2 Cell Labeling Using QDs;123
1.3.5.5.4.3;4.4.3 In Vivo Imaging Using QDs;124
1.3.5.6;5â¦Bimodal Core--Shell Nanoparticles;125
1.3.5.7;6â¦Future Developments;126
1.3.5.8;References;127
1.3.6;31 Transport Processes of Nanoparticles in Gases and Liquids;137
1.3.6.1;Abstract;137
1.3.6.2;1â¦Introduction;137
1.3.6.3;2â¦Interaction Potential between a Nanoparticle and a Molecule;139
1.3.6.4;3â¦Kinetic Theory of Rarefied Gas Nano-suspensions;141
1.3.6.4.1;3.1 Diffusion of Nanoparticles in Rarefied Gases;142
1.3.6.4.2;3.2 Temperature Dependence of Nanoparticle Diffusivity;145
1.3.6.4.3;3.3 Thermodiffusion;146
1.3.6.4.4;3.4 Effective Viscosity of Gas Nano-suspensions;150
1.3.6.5;4â¦Mechanisms of Nanoparticles Transport Processes in Gases and Liquids;153
1.3.6.5.1;4.1 Rarefied and Moderately Dense Gas Nanosuspensions;153
1.3.6.5.2;4.2 Brownian Particles;156
1.3.6.5.3;4.3 Liquids and Dense Gases;156
1.3.6.5.4;4.4 Nano-suspensions;157
1.3.6.6;5â¦Transport Coefficients for Nanosuspensions;160
1.3.6.6.1;5.1 Effective Viscosity of Nanofluids;161
1.3.6.6.2;5.2 Effective Thermal Conductivity of Nanofluids;164
1.3.6.7;6â¦Conclusions;166
1.3.6.8;Acknowledgments;167
1.3.6.9;References;167
1.4;Part II Nanocomposites;171
1.4.1;66 Nanocomposite Materials from Theory to Application;172
1.4.1.1;Abstract;172
1.4.1.2;1â¦Introduction and Definitions;173
1.4.1.3;2â¦Nanomaterials;175
1.4.1.3.1;2.1 Introduction;175
1.4.1.3.2;2.2 Metals;176
1.4.1.3.2.1;2.2.1 Photo Lithography;176
1.4.1.3.2.2;2.2.2 Synthesis of Metallic Nanoparticles;177
1.4.1.3.3;2.3 Ceramics;179
1.4.1.3.4;2.4 Semiconductors;180
1.4.1.3.5;2.5 Carbon;181
1.4.1.3.6;2.6 Coatings and Thin Films;183
1.4.1.3.7;2.7 Mesoporous Materials;184
1.4.1.3.8;2.8 Nano Crystalline Alloys and Magnetic Materials;187
1.4.1.3.9;2.9 Quantum Dots;187
1.4.1.3.10;2.10 Nanostructured Biological Materials;189
1.4.1.4;3â¦Nanocomposites;190
1.4.1.4.1;3.1 Introduction;190
1.4.1.4.2;3.2 Ceramic Nanocomposites;193
1.4.1.4.3;3.3 Carbon Nanotube Reinforced Ceramic Nanocomposites;194
1.4.1.4.4;3.4 Preparation of Carbon Nanotube Reinforced Ceramic Nanocomposites;194
1.4.1.4.5;3.5 Oxide-Based Ceramic Nanocomposites;195
1.4.1.4.6;3.6 Non Oxide-Based Ceramic Nanocomposites;196
1.4.1.5;4â¦Properties;197
1.4.1.5.1;4.1 Magnetic Properties;197
1.4.1.5.2;4.2 Electrical Properties;199
1.4.1.5.3;4.3 Thermal Properties;202
1.4.1.5.4;4.4 Optical Properties;203
1.4.1.5.5;4.5 Mechanical Properties;204
1.4.1.5.6;4.6 Superplasticity;205
1.4.1.5.7;4.7 Thermodynamics of Nanocrystalline Materials;206
1.4.1.6;5â¦Synthesis;207
1.4.1.6.1;5.1 Gas Phase Synthesis;207
1.4.1.6.2;5.2 Plasma Chemical Technique;207
1.4.1.6.3;5.3 Thermal Spraying;208
1.4.1.6.4;5.4 Precipitation from Colloidal Solution;208
1.4.1.6.5;5.5 Thermal Decomposition and Reduction;209
1.4.1.6.6;5.6 Milling and Mechanical Alloying;209
1.4.1.6.7;5.7 Self-Propagation High-Temperature Synthesis;213
1.4.1.6.8;5.8 Sol Gel Synthesis;213
1.4.1.6.8.1;5.8.1 Sol Gel Synthesis and Characterization of Al2O3--SiC Nanocomposite;215
1.4.1.6.8.2;5.8.2 Synthesis of Biodegradable Nanocomposite Scaffold for Bone Tissue Engineering;221
1.4.1.7;6â¦Applications;223
1.4.1.7.1;6.1 Introduction;223
1.4.1.7.2;6.2 Ceramic Nanocomposites for Load-Bearing Applications;224
1.4.1.7.3;6.3 Nanotechnology in Automotive Applications;224
1.4.1.7.4;6.4 Nanoclay-Polymer Composites for Structural Applications;224
1.4.1.7.5;6.5 Metal Matrix Nanocomposites for Structural Applications;225
1.4.1.7.6;6.6 Application of Ferrofluids with Magnetic Nanoparticles;226
1.4.1.7.7;6.7 Nanocomposite Coatings;226
1.4.1.7.8;6.8 Electrodeposited Nanostructures;227
1.4.1.7.9;6.9 Military Applications;227
1.4.1.7.10;6.10 Nanoelectronic;227
1.4.1.8;7â¦Environmental Implications;228
1.4.1.8.1;7.1 Introduction;228
1.4.1.8.2;7.2 Classifications and Sources of Pollutants;229
1.4.1.8.2.1;7.2.1 Air Pollutant;229
1.4.1.8.2.2;7.2.2 Water Pollutants;229
1.4.1.8.2.3;7.2.3 Land Pollutants;230
1.4.1.8.3;7.3 Health and Safety Issues;230
1.4.1.9;References;231
1.4.2;38 Mechanics of Cellulose Nanocrystals and their Polymer Composites;234
1.4.2.1;Abstract;234
1.4.2.2;1â¦Introduction;234
1.4.2.3;2â¦Mechanics of CNXLs;238
1.4.2.4;3â¦Mechanics of CNXL Composites;244
1.4.2.4.1;3.1 Tensile Properties;246
1.4.2.4.2;3.2 Nanoindentation Studies;248
1.4.2.4.3;3.3 Creep Properties;252
1.4.2.4.4;3.4 Thermo-Mechanical Characterization;253
1.4.2.5;4â¦Morphological Analysis;254
1.4.2.5.1;4.1 Cellulose Nanocrystals;254
1.4.2.5.2;4.2 CNXL Polymer Composites;256
1.4.2.5.2.1;4.2.1 Optical Microscopy;256
1.4.2.5.2.2;4.2.2 Scanning Electron Microscopy;257
1.4.2.5.2.3;4.2.3 Transmission Electron Microscopy;259
1.4.2.6;5â¦Summary;259
1.4.2.7;Acknowledgments;260
1.4.2.8;References;260
1.4.3;29 Shift of Lines in Phase Diagrams for Nanograined Materials;265
1.4.3.1;Abstract;265
1.4.3.2;1â¦Introduction;266
1.4.3.3;2â¦Investigation of Nanograined Doped ZnO Films;267
1.4.3.4;3â¦Solubility of Co in Zno;267
1.4.3.5;4â¦Solubility of Mn in ZnO;275
1.4.3.6;5â¦Multilayer Grain Boundary Segregation in ZnO as a Reason for Solubility Increase;278
1.4.3.7;6â¦Conclusions;281
1.4.3.8;Acknowledgments;281
1.4.3.9;References;282
1.4.4;64 Modeling Carbon Nanotube Electrical Properties in CNT/Polymer Composites;286
1.4.4.1;Abstract;286
1.4.4.2;1â¦Introduction;287
1.4.4.3;2â¦Results and Discussion;289
1.4.4.4;3â¦Conclusion;292
1.4.4.5;Acknowledgments;293
1.4.4.6;References;293
1.4.5;61 Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites;295
1.4.5.1;Abstract;295
1.4.5.2;1â¦Introduction;296
1.4.5.3;2â¦Numerical Formulation;300
1.4.5.3.1;2.1 Thermal Transport;301
1.4.5.3.2;2.2 Electrical Transport;302
1.4.5.3.3;2.3 Solution Methodology;303
1.4.5.4;3â¦Conduction in Percolating Network;304
1.4.5.4.1;3.1 Network Transport in the Non-Contacting Limit;305
1.4.5.4.2;3.2 Conduction Exponents;306
1.4.5.4.3;3.3 Conduction in Heterogeneous Networks of Metal-Semiconducting Tubes;308
1.4.5.5;4â¦Conduction in Nanotube: Polymer Composites;309
1.4.5.5.1;4.1 Effect of Tube-Substrate Interfacial Resistance;310
1.4.5.5.2;4.2 Effect of Tube--Tube Conductance;312
1.4.5.5.3;4.3 Effect of Tube Density;313
1.4.5.5.4;4.4 Electrical Conductivity of CNT-Organic Composites;314
1.4.5.5.5;4.5 Comparison with Effective Medium Theory;315
1.4.5.6;5â¦Interfacial Thermal Transport Between Nanotubes;317
1.4.5.6.1;5.1 Heat Pulse Analysis Using Molecular Dynamics;319
1.4.5.6.2;5.2 Wavelet Analysis of Heat Pulse;327
1.4.5.7;6â¦Conclusions;329
1.4.5.8;Acknowledgments;330
1.4.5.9;References;330
1.4.6;62 Elastic Properties of Co/Cu Nanocomposite Nanowires;334
1.4.6.1;Abstract;334
1.4.6.2;1â¦Introduction;335
1.4.6.3;2â¦Computational Method;335
1.4.6.4;3â¦Results and Discussion;337
1.4.6.5;4â¦Summary and Conclusions;345
1.4.6.6;Acknowledgments;346
1.4.6.7;References;346
1.4.7;67 On the Continuum Mechanics Approach in Modeling Nanosized Structural Elements;348
1.4.7.1;Abstract;348
1.4.7.2;1â¦Introduction;349
1.4.7.3;2â¦Basic Equations in Classical Continuum Mechanics;350
1.4.7.3.1;2.1 Kinematical Equations;350
1.4.7.3.1.1;2.1.1 Deformation Gradient and Strain Tensors;351
1.4.7.3.1.2;2.1.2 Displacements, Displacement Gradient, Linearizations;352
1.4.7.3.2;2.2 Stress State;353
1.4.7.3.2.1;2.2.1 Cauchy s Stress Vector and Tensor;354
1.4.7.3.2.2;2.2.2 Stress Vectors and Tensors After Piola-Kirchhoff;355
1.4.7.3.3;2.3 Balance Equations;356
1.4.7.3.3.1;2.3.1 General Global and Local Equations in the Case of Smooth Fields;356
1.4.7.3.3.2;2.3.2 Mechanical Balance Equations;358
1.4.7.3.3.2.1;Mass Balance;358
1.4.7.3.3.2.2;Balance of Momentum;358
1.4.7.3.3.2.3;Balance of Moment of Momentum;359
1.4.7.3.3.2.4;Balance of Energy;359
1.4.7.3.3.2.5;Balance of Entropy;360
1.4.7.3.4;2.4 Constitutive Modeling: Elastic Material;360
1.4.7.4;3â¦Additional Equations Taking into Account Surface Effects;361
1.4.7.4.1;3.1 Kinematical Equations;362
1.4.7.4.2;3.2 Stress state;362
1.4.7.4.3;3.3 Constitutive Equations;363
1.4.7.5;4â¦Applications;364
1.4.7.6;5â¦Outlook;365
1.4.7.7;References;365
mehr

Autor

The development of nanomaterials opens the possibility for new materials with outstanding properties compared to classical engineering materials. These materials can find applications in different fields such as medical treatment or structural mechanics.

This monograph focuses on two major groups of nanomaterials, i.e.

nanoparticels and nanocomposites.  Nanopartices, for example in the form of hollow particles, allow for new possibilities in drug delivery. Different aspects of nanoparticles ranging from manufacturing to modeling and simulation are covered.  Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties.  The properties of nanocomposites depend not only on the individual components used but also on the morphology and the interfacial characteristics. Nanocomposite coatings and materials are one of the most exciting and fastest growing areas of research and novel properties being continuously developed which are previously unknown in the constituent materials. Thus, the second part of this monograph gives an overview on the latest developments in the area of composites and coatings based on nanomaterials.