Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.
E-BookPDF1 - PDF WatermarkE-Book
544 Seiten
Englisch
Springer International Publishingerschienen am12.11.20151st ed. 2015
This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science.
The chapter authors were invited speakers at the 5th Symposium 'Modelling Behaviour', which took place at the CITA in Copenhagen in September 2015.
mehr
Verfügbare Formate
BuchGebunden
EUR160,49
E-BookPDF1 - PDF WatermarkE-Book
EUR149,79

Produkt

KlappentextThis book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science.
The chapter authors were invited speakers at the 5th Symposium 'Modelling Behaviour', which took place at the CITA in Copenhagen in September 2015.
Details
Weitere ISBN/GTIN9783319242088
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2015
Erscheinungsdatum12.11.2015
Auflage1st ed. 2015
Seiten544 Seiten
SpracheEnglisch
IllustrationenXXV, 544 p. 511 illus., 105 illus. in color.
Artikel-Nr.1859668
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Scientific Committee;5
2;Contents;7
3;Contributors;12
4;Introduction;19
5;Part I;24
6;1 Modelling Aggregate Behaviour;27
6.1;Abstract;27
6.2;Aim and Context---Behavioural Modelling for Aggregate Architectures;27
6.3;State of the Art;28
6.4;Methods;29
6.4.1;Computational Modelling---Mathematical and Material Model;29
6.4.2;Mathematical Model---DEM;29
6.4.3;Material Model---Online-Controlled Robotics;29
6.5;Results;29
6.5.1;Case Study One: Simulation of an Aggregate Arch;30
6.5.2;Case Study Two: Online-Controlled Robotic Grading of an Aggregate Wall;33
6.6;Discussion---Modelling Aggregate Behaviour;35
6.7;Outlook---Synthesizing Behavioural Models;36
6.8;Acknowledgements;36
6.9;References;36
7;2 A Multiscale Adaptive Mesh Refinement Approach to Architectured Steel Specification in the Design of a Frameless Stressed Skin Structure;38
7.1;Abstract;38
7.2;Introduction;38
7.3;ISF Process;39
7.4;Stressed Skin Structures;39
7.5;Research Objective: A Mesh-Based Approach to Communication Across Scales;40
7.6;Modelling Framework;41
7.6.1;Strategy and Computational Tooling;42
7.6.1.1;Macro Scale;42
7.6.1.1.1;Preconfiguration;42
7.6.1.1.2;Generative Model;42
7.6.1.1.3;Panelisation Model;43
7.6.1.1.4;Initial FE Model;45
7.6.1.2;Meso Scale;45
7.6.1.2.1;Refined FE Model;45
7.6.1.2.2;Strategic Dimpling and Lower Skin Fabrication Model;45
7.6.1.3;Macro Scale;46
7.6.1.3.1;Reaction Diffusion;46
7.6.1.4;Meso to Micro Scale;47
7.6.1.4.1;Variable Resolution Quad Mesh;47
7.6.1.4.2;Calibrating Micro Scale Calculations using Vickers Hardness and Optical Microscopy;49
7.6.1.5;Micro to Meso Scale;49
7.6.1.5.1;Depth Modulation and Upper Skin Fabrication Model;49
7.7;Fabrication and Toolpathing;51
7.8;Discussion;53
7.9;Acknowledgements;55
7.10;References;55
8;3 Topology Optimisation for Steel Structural Design with Additive Manufacturing;56
8.1;Abstract;56
8.2;Introduction;56
8.3;Structural Design and Analysis;57
8.4;Topology Optimisation;57
8.5;Additive Manuacturing;58
8.6;Steel Node Design;59
8.6.1;Traditional Node;60
8.6.2;AM Node 1.0;60
8.6.3;AM Node 2.0;61
8.7;Conclusion;65
8.8;Acknowledgements;65
8.9;References;65
9;4 Challenges of Scale Modelling Material Behaviour of Additive-Manufactured Nodes;66
9.1;Abstract;66
9.2;Introduction;66
9.3;Background;67
9.3.1;Additive Manufacturing in Metals;67
9.3.2;Node Precedents;68
9.3.3;Design and Optimisation for Additive Manufacture;68
9.4;The Smartnodes Design System and Prototypes;69
9.5;Discussion;70
9.5.1;Flexibility for Customisation in Construction;70
9.5.2;Optimisation for Broader Criteria;71
9.6;Conclusion;71
9.7;References;72
10;5 Form-Finding and Design Potentials of Bending-Active Plate Structures;73
10.1;Abstract;73
10.2;Introduction;73
10.3;Design Approaches to Bending-Active Plate Structures;74
10.3.1;Self-strutted Geodesic Plydomes;74
10.3.2;ICD/ITKE Research Pavilion 2010;75
10.4;Form-Finding and Analysis of Bending-Active Plate Structures;76
10.5;Case Studies that Render New Potentials;77
10.5.1;Case Study 1---Effective Pinching;77
10.5.2;Case Study 2---Mutual Reinforcement;78
10.5.3;Case Study 3---Functionalized Instability;79
10.6;Conclusion;82
10.7;References;82
11;6 Form-Finding of Architectural Membranes in a CAD-Environment Using the AiCAD-Concept;84
11.1;Abstract;84
11.2;Introduction and Motivation;84
11.3;The AiCAD Concept and Its Implementation;86
11.3.1;The AiCAD Concept;86
11.3.2;The Isogeometric B-Rep Analysis (IBRA);87
11.3.2.1;B-Rep as Standard for Geometry Description;88
11.3.2.2;IBRA as Generalization of the IGA Concept;88
11.3.3;Implementation in Rhinoceros;89
11.4;Form-Finding as an Application of AiCAD;89
11.4.1;Form-Finding of a Prototype Five-Point Sail;89
11.4.2;Form-Finding of a Full Scale Tent with Integrated Eye-Cable;91
11.5;Conclusions and Outlook;92
11.6;Acknowledgements;92
11.7;References;92
12;7 Balancing Behaviours---Designing with Combinatorial Equilibrium Models;94
12.1;Abstract;94
12.2;Introduction;94
12.3;Technical Framework;95
12.3.1;Graphic Statics;95
12.3.2;Representation of CEM;96
12.4;Structural Design Process with CEM;96
12.5;Case Studies;98
12.5.1;Stress Analysis;98
12.5.2;Form-Finding;98
12.5.3;Active Design;100
12.6;Conclusion;104
12.7;Acknowledgments;105
12.8;References;105
13;8 Hybrid Tower, Designing Soft Structures;106
13.1;Abstract;106
13.2;Introduction;107
13.2.1;Structural Concept of the Hybrid Tower;108
13.3;Computational Modelling Approach;109
13.3.1;Challenges;109
13.3.2;Computational Workflow;110
13.3.3;Generative Modelling Methods;110
13.3.4;Analytical Modelling Methods;111
13.4;Fabrication and Construction;113
13.4.1;Designing the Knitted Membrane Material;113
13.4.2;Generating Fabrication Data;114
13.4.3;Assembling the Tower;115
13.5;Post Construction Analysis;115
13.6;Conclusion;117
13.7;Acknowledgement;118
13.8;References;118
14;9 Integrating Differentiated Knit Logics and Pre-Stress in Textile Hybrid Structures;119
14.1;Abstract;119
14.2;Introduction;119
14.2.1;Textile Hybrid Structural System;120
14.3;Differentiating Rib-Knit Behaviour;122
14.4;Mobius Rib-Knit Prototype;123
14.4.1;Relating Force Distribution and Knit Program;124
14.5;Conclusion;126
14.6;Acknowledgements;129
14.7;References;129
15;10 Thermal Responsive Envelope: Computational Assembling Behavioural Composites by Additive and Subtractive Processes;130
15.1;Abstract;130
15.2;Introduction;131
15.3;Methods;132
15.3.1;Parametric Model;132
15.3.2;Environmental Simulation Model;132
15.3.3;Evolutionary Model;132
15.4;Design Experimentation;134
15.5;Results;134
15.6;Conclusions;138
15.7;References;139
16;11 Formations of Energy: Modelling Toward an Understanding of Open Thermodynamic Systems;140
16.1;Abstract;140
16.2;Introduction;140
16.3;Background;141
16.3.1;An Open World;141
16.3.2;Modelling Practices are Isolating;141
16.3.3;Toward an Understanding of Open Systems;142
16.4;Methods;142
16.4.1;Constructive Energy Exchanges and Their Boundaries---Forest Succession;144
16.4.2;Destructive Energy Exchanges and Their Boundaries---Lightning and Fire Disturbances;147
16.4.3;Destructive Energy Exchanges and Their Boundaries---Wind Disturbances;148
16.4.4;Destructive Energy Exchanges and Their Boundaries---Pest Disturbance;149
16.4.5;Destructive Energy Exchanges and Their Boundaries---Clear Cutting Disturbance;149
16.5;Discussion;152
16.5.1;Boundaries of Narrative;152
16.5.2;Boundaries of Computational Scope;152
16.6;Conclusion;152
16.7;References;153
17;12 Thinking Massively Parallel: Design Modelling Thermoactive Architecture;154
17.1;Abstract;154
17.2;Introduction;154
17.3;Introduction to Thermoactive Architecture;155
17.4;Chinatown Branch Library and Simulation Challenges;156
17.5;Towards Massively Parallel Simulation;157
17.5.1;Parallelization Methodology;159
17.5.2;Further Acceleration;160
17.6;Paralllel Daylight and Thermoactive Design Thinking;160
17.7;Conclusions and Future Work;164
17.8;References;164
18;13 The Architecture of the ILL-Tempered Environment;166
18.1;Abstract;166
18.2;Introduction;166
18.3;The Design for ILL-Tempered Environment;168
18.3.1;Many Versus One;168
18.3.2;Understanding the Given Site Through Movement and Change;169
18.3.3;Introducing Actuators, Sensors and Controllers;170
18.3.4;Surveillance and Real-Time Data Collection;171
18.3.5;Control and Information Processing;171
18.4;Conclusions;174
18.5;Acknowledgements;174
18.6;References;174
19;14 Designing the Desert;175
19.1;Abstract;175
19.2;Introduction;175
19.3;The Shapes and Textures of the Desert;176
19.4;Computational Generation of Ripples;178
19.4.1;Topology;178
19.4.2;3D Structure;179
19.5;Optimizing the Ripples;180
19.6;Conclusions;184
19.7;Acknowledgments;184
19.8;References;184
20;Part II;185
21;15 Digital Inca: An Assembly Method for Free-Form Geometries;188
21.1;Abstract;188
21.2;Introduction;189
21.3;Inca Architecture;189
21.3.1;Hammerstones;190
21.3.2;Quarrying and Configuring;190
21.3.3;Fitting;191
21.3.3.1;Templating;191
21.3.3.2;Dry Fitting;191
21.3.4;Finishing and Dressing: The Wedge Method;191
21.3.5;Mortar Bed Versus Dry Fit;192
21.4;Translation Prototypes;192
21.4.1;Prototype 01;193
21.4.2;Prototype 02;193
21.5;Method;193
21.5.1;Geometry;194
21.5.2;Structural Computation;194
21.5.3;Machining;196
21.5.4;Assembly;196
21.6;Conclusions;200
21.7;Acknowledgments;200
21.8;References;200
22;16 Decomposing Three-Dimensional Shapes into Self-supporting, Discrete-Element Assemblies;202
22.1;Abstract;202
22.2;Introduction;202
22.2.1;Related Work;204
22.2.2;Objectives and Outline;204
22.3;Decomposition Process;204
22.3.1;Equilibrium Calculation;205
22.3.2;Interface-Force Diagrams;206
22.3.3;Feedback and Equilibrium Modification;207
22.4;Results;207
22.4.1;Case Study One;209
22.4.2;Case Study Two;209
22.4.3;Case Study Three;209
22.5;Conclusion;215
22.6;Acknowledgments;215
23;17 Computational Brick Stacking for Constructing Free-Form Structures;217
23.1;Abstract;217
23.2;The Natural Ecosystem;217
23.3;A New Material System;218
23.4;The Design to Testing Workflow;219
23.5;The Design Challenge;220
23.6;The Computational Model;221
23.7;Feedback and Integration;224
23.8;Conclusion;226
23.9;References;226
24;18 Automated Casting Systems for Spatial Concrete Lattices;227
24.1;Abstract;227
24.2;Introduction: Lightweight UHPFC Structures as a Potential Solution to Sustainable Concrete Construction;228
24.2.1;Background;228
24.3;Overal Context;228
24.3.1;From Nanometric Metamaterials to Lightweight Concrete Lattices;229
24.4;Research by Design: Experiments at EZCT Architecture & Design Research;232
24.4.1;U-Cube: Universal Cube for Discrete Construction (2009--2012);232
24.4.2;Studies in Recursive Lattices (2012--2013);232
24.5;Research by Design: Experiments at UCL Bartlett (B-Pro, Graduate Architectural Design, Research Cluster 5);234
24.5.1;Three Dimensional Fabric Formwork System (Project by Zhe Xing and Danli Yu), 2013--2014;234
24.5.2;Clay Robotics (Project by Jiashuang Sun, Kelvin Ho and Sihan Wang), 2013--2014;234
24.6;Conclusion: Integrating Multiple Constraints Within the Algorithmic Design;236
24.7;Acknowledgements;237
24.8;References;237
25;19 Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures;238
25.1;Abstract;238
25.2;Multi-Material Additive Manufacturing;239
25.3;Large Scale Integrative Approach;240
25.4;Ga-Based Multi-Objective Optimization Form-Finding Algorithm;240
25.5;Robotic Fabrication System;242
25.6;Fabricated Prototypes;243
25.7;Mechanical Testing;244
25.8;Conclusion;247
25.9;References;248
26;20 Integrated Design and Fabrication Strategies for Fibrous Structures;249
26.1;Abstract;249
26.2;Introduction;249
26.3;Investigations and Technical Challenges;251
26.3.1;Biological Investigation;251
26.3.2;Bio-inspired Fabrication Strategies for Pneumatic Formwork;251
26.3.3;Technical Challenges;252
26.4;Integrated Design Strategies, Methods and Processes;253
26.4.1;Project Specific Integrated Design Strategies;253
26.4.2;Design Space and Form Finding Methods;254
26.5;Agent Based Computational Method;255
26.5.1;Adaptive Online Robotic Process;256
26.6;Result and Conclusions;257
26.7;Acknowledgments;257
26.8;References;257
27;21 Automated and User Controlled Variation and Optimization of Grid Structures;258
27.1;Abstract;258
27.2;Introduction;258
27.3;Automated Loop Processes and User Input;260
27.3.1;Cross Sectional Variation;261
27.3.2;Density Variation: Grid Spacing;261
27.4;Case Study: Repetitive Rectangular Grid;263
27.5;Conclusions;265
27.6;References;266
28;22 Simulation Methods for the Erection of Strained Grid Shells Via Pneumatic Falsework;267
28.1;Abstract;267
28.2;Dome Case Study;268
28.2.1;Scaled Physical Model;268
28.2.2;Young's Modulus of Acrylic Beams;269
28.2.3;Photogrammetry;271
28.3;Results and Observations;271
28.3.1;Air Pressure;272
28.3.2;Uplift;272
28.4;Comparison with Finite Element Simulations;273
28.4.1;FE Simulations;273
28.4.2;Erection Stages;273
28.4.3;Coupling Elements and Contact Springs;274
28.5;Results;275
28.6;Conclusion;277
28.7;Acknowledgements;277
28.8;References;277
29;23 From 3-Point-Constellations to Self-organizing Folded/Bent Spatial Configurations;279
29.1;Abstract;279
29.2;Context;279
29.3;Physical Experiments and Resulting Constraints for Geometrical Setup;282
29.4;3D Scans as References;283
29.5;Curvature Analysis;284
29.6;Simulation of Geometry;286
29.7;Simulation Tool;287
29.8;Conclusion and Perspective;289
29.9;References;290
30;24 Simulating Fusion: An Epistemological Analysis of a New Design Tool for an Imminent Multi-material Future;292
30.1;Abstract;292
30.2;Introduction;293
30.2.1;Additive Manufacturing Developments;293
30.2.2;Further Outlook;293
30.2.3;Multi-material Printing;293
30.2.4;Multi-materiality in Architecture and Graded Information CAD;293
30.2.5;Existing Software Critique;294
30.3;Research Question, Methodology and Design Objectives;294
30.3.1;Framework Definition;294
30.3.2;Particle System Elements and Research Problem;294
30.3.3;Simulation and Reality;294
30.3.4;Design Brief Definition;295
30.3.5;Accumulative Roll Bonding Multi-material Manufacturing;295
30.3.6;Material Type Selection;296
30.4;Design Experiments;296
30.4.1;Experimentation Objective;296
30.4.2;Simulation Global Parameter Set-Out;296
30.4.3;Continuing Research Delimitation;297
30.4.4;Exercise 1: Agency Informed by Accumulative Roll Bonding;297
30.4.4.1;Critique;298
30.4.4.2;Invasive Versus Non-contact Forces;298
30.4.5;Exercise 2: Agency Informed by Loading Conditions;298
30.4.5.1;Result and Critique;299
30.5;Applications and Discussion;300
30.5.1;Alternative Applications of the Design Methodology;300
30.6;Conclusion;301
30.7;References;301
31;25 Modelling Behaviour for Distributed Additive Manufacturing;303
31.1;Abstract;303
31.2;Introduction;304
31.3;Distributed Construction: Background;305
31.4;Additive Manufacturing: Background;305
31.5;Behavioural Model for a Cable-Suspended Robotic Construction System: Implementation Strategy;305
31.5.1;Hardware;305
31.5.2;Software;306
31.6;Behavioural Model for a Cable-Suspended Robotic Construction System: Rule-Sets and Adaptation;307
31.6.1;Main Rule Set;308
31.6.2;Adaptation to Material Conditions;308
31.6.3;Adaptation to Design Intent;308
31.7;Evaluation and Discussion;309
31.8;Acknowledgements;310
31.9;References;310
32;26 Design Equilibrium of Form, Materiality and Fabrication: A Bacterial-Inspired Multidisciplinary Optimisation Strategy for Free-Form Concrete Structures;311
32.1;Abstract;311
32.2;Introduction;311
32.3;Integrative Concept;312
32.3.1;Developed Production Process;312
32.3.2;Construction Method and Load Bearing Effect;314
32.4;Multidisciplinary Optimisation Strategy;315
32.4.1;Biological Role Model of the Optimisation Algorithm;315
32.4.2;Transfer and Digital Implementation;316
32.4.3;Digital Framework;317
32.4.4;Variables of Optimisation and Objective Function;317
32.5;Results: Designing and Applications;318
32.5.1;Wide Spanning Shell Structure;318
32.5.2;Physical Prototype;319
32.6;Conclusion;320
32.7;References;320
33;27 Design with Material Uncertainty: Responsive Design and Fabrication in Architecture;322
33.1;Abstract;322
33.2;Introduction;322
33.3;Background;323
33.4;Material Uncertainty Within the Professional Model and Informal Production;323
33.4.1;The Professional Model;324
33.4.2;Informal Production;324
33.5;Responsive Design and Fabrication;324
33.5.1;IDR;325
33.6;Two Design and Fabrication Experiments;327
33.6.1;Experiment 1: Scrap Wall;327
33.6.2;Experiment 2: ``Scrap Column'';330
33.7;Conclusions;333
33.7.1;Limitation and Future Research;333
33.8;Acknowledgements;334
33.9;References;334
34;28 Harnessing the Informal Processes Around the Computational Design Model;335
34.1;Abstract;335
34.2;Introduction;335
34.3;Context;336
34.4;A Strategic Framework of Boundary Objects;337
34.5;Deployed Boundary Objects;338
34.6;Applied Strategies in Project Development;341
34.7;Concluding Remarks;344
34.8;Acknowledgements;345
34.9;References;345
35;29 A Generic Communication Library for Human-Robot Interaction on Construction Sites;346
35.1;Abstract;346
35.2;Introduction;346
35.3;Technical Requirements;347
35.4;API-Independent Communications;348
35.5;Abstraction Management via Progressive Enhancement;348
35.5.1;Template Metaprogramming Compatibility;349
35.6;Architecture;349
35.6.1;Dual Full-Duplex TCP Connection;349
35.6.2;Dictionary-Based Nested Messages;349
35.6.3;Distribution as Robot Languages Extension Packages;352
35.7;Implementation;352
35.7.1;Channel Creation Over a TCP/IP Socket;352
35.7.2;Message Reception (Instruction Content Streaming);352
35.7.3;Message Emission (Robot Monitoring);353
35.7.4;Mono-threaded Program Example;353
35.7.5;Multi-threaded Program Example;354
35.8;Towards Applications of Real-Time Trajectory Edition with Sensors;354
35.8.1;Integration of Machine Localization;354
35.8.2;Adaptation to Process-Specific Context Variables;355
35.9;Conclusion;355
35.10;References;356
36;Part III;357
37;30 Towards AI Drawing Agents;360
37.1;Abstract;360
37.2;Introduction;360
37.2.1;Motivation;360
37.2.2;Cppn-Neat;361
37.2.3;Problem;362
37.2.4;Method;362
37.3;Parameterization;362
37.4;Classic Optimization;364
37.5;Connectivity Patterns and Scalability;364
37.6;Agent Vision and Scalability;367
37.7;Biased Agent Navigation;368
37.8;Complex, Re-usable ANNs;369
37.9;Re-useable Navigation Agents;370
37.10;Conclusion;371
37.11;References;372
38;31 Agent-Based Decision Control---How to Appreciate Multivariate Optimisation in Architecture;373
38.1;Abstract;373
38.2;Introduction;373
38.3;Background;374
38.4;Method;374
38.4.1;The Moth Algorithm;374
38.4.2;Part 1;376
38.4.3;Part 2;376
38.4.4;Objective Functions;377
38.5;Results;377
38.5.1;Part 1;377
38.5.2;Part 2;379
38.6;Discussion and Further Research;382
38.7;Conclusion;383
38.8;Acknowledgments;383
38.9;References;383
39;32 Implementation of Decentralized Version Control in Collective Design Modelling;385
39.1;Abstract;385
39.2;Introduction;386
39.2.1;Accumulation of Knowledge and Beyond;386
39.3;Present Tools and Previous Studies;386
39.3.1;Idea and Methods of Collaborative Modeling;386
39.3.2;Internet and Methods from Software Development;386
39.3.3;Functions of Modern CAD and BIM Software;387
39.4;System and Flow;388
39.4.1;The User Work Flow;388
39.4.2;The Software Architecture;390
39.4.3;Non-human User, Automated Generation of Models;390
39.4.4;The Social Architecture;391
39.5;Results;392
39.6;Discussion;394
39.7;Conclusion;396
39.7.1;Summary;396
39.7.2;Further Exploration;396
39.8;References;396
40;33 Assessing Implicit Knowledge in BIM Models with Machine Learning;398
40.1;Abstract;398
40.2;Introduction;398
40.3;State of the Art;399
40.4;Applications of Machine Learning;400
40.5;Implementation;400
40.6;Unsupervised Learning: Anomaly Detection;402
40.7;Supervised Learning: Neural Networks;403
40.8;Conclusion;406
40.9;References;407
41;34 BIM-PIM-CIM: The Challenges of Modelling Urban Design Behaviours Between Building and City Scales;408
41.1;Abstract;408
41.2;PIM: Stuck Between Two Stools;408
41.3;From BIM to PIM?;409
41.4;Some Novel Approaches to Modelling Precinct Behaviour;410
41.4.1;Punggol;411
41.4.2;Drawing from AURIN;411
41.4.3;Rapid Precinct Design---Datasets Used Generatively;412
41.4.4;Creative Disruption: Adding Complex Adaptive Systems to the Mix;413
41.5;Conclusion;417
42;35 EPIFLOW: Adaptive Analytical Design Framework for Resilient Urban Water Systems;419
42.1;Abstract;419
42.2;Background;420
42.2.1;Framework and Methodology;420
42.3;Epiflow Design Process;421
42.3.1;GIS Data Formatting and Input;421
42.3.2;Site Sampling and Simulation Setup;423
42.3.3;Modeling Water Flow;424
42.3.4;Water Basin Delineation;425
42.3.5;Compute Storm Event Runoff Using the Rational Method;425
42.3.6;Water Usage and Infrastructural Carrying Capacity;427
42.4;Case Study Application in Design Studio;430
42.5;Conclusion;430
42.6;Acknowledgments;431
42.7;References;431
43;36 Integrated Forest Biometrics for Landscape-Responsive Coastal Urbanism;432
43.1;Abstract;432
43.2;Introduction;432
43.3;Review of Models and Parameters;434
43.3.1;Mangrove Forest Model;434
43.4;3d Urban Model;435
43.5;Methodology for Integration;436
43.6;Results;437
43.7;Conclusion, Discussion and Future Work;439
43.8;Acknowledgements;441
43.9;References;441
44;37 Ubiquitous Monitoring and Adaptation of the Tempered Environment;443
44.1;Abstract;443
44.2;Background;443
44.3;Building Automation System and Passive Controls;444
44.4;Data Collection Method;444
44.5;Experiment 1---Thermodynamics of a Raised Floor System;449
44.6;Experiment 2---Mechanically Assisted Exhaust and Thermal Comfort;452
44.7;Conclusion and Future Work;454
44.8;References;455
45;38 Keeping an Eye Out: Real Time, Real World Modeling of Behavior in Health Care Settings;456
45.1;Abstract;456
45.2;Background;457
45.3;Method;457
45.3.1;VALSE Interface;458
45.3.2;Visualization Panel;458
45.3.3;Event Timeline;459
45.3.4;Creating Events;461
45.3.5;Spatial Proxemics in Event Identification (Figs. 6, 7);461
45.3.6;Bottom-Up Design Recipes;461
45.4;Applications for VALSE System;462
45.5;Future Work: Health Care Settings;463
45.6;References;464
46;39 Energy Efficiency Assessment Based on Realistic Occupancy Patterns Obtained Through Stochastic Simulation;465
46.1;Abstract;465
46.2;Introduction;466
46.3;Case Study;466
46.3.1;Building Spaces and Ventilation Requirements for Indoor Air Quality;467
46.3.2;Internal Heat Gains Due to People and Equipment;468
46.3.3;Occupancy Patterns and Schedule of the Classrooms;468
46.4;Methodology;469
46.5;Results;471
46.6;Conclusions;473
46.7;References;473
47;40 Boosting the Efficiency of Architectural Visual Scripts;475
47.1;Abstract;475
47.2;Introduction;475
47.3;Programming and Software Engineering Concepts Supporting the Strategy;476
47.3.1;Algorithms;476
47.3.2;Structured Programming;476
47.3.3;Design Patterns;477
47.3.4;Modular Programming;477
47.3.5;Data Structures;477
47.4;The Extended Strategy of Visual Script Structuring;478
47.5;Strategy Application: The Script Structuring Experiment;479
47.5.1;Method;479
47.5.2;Study Sample Selection;480
47.5.3;The Experiment;481
47.6;Conclusions;485
47.7;References;485
48;41 Modelling with Forces: Grammar-Based Graphic Statics for Diverse Architectural Structures;487
48.1;Abstract;487
48.2;Introduction;487
48.3;Background;488
48.3.1;Grammar-Based Design;488
48.3.2;Structural Grammars;488
48.3.3;Graphic Statics;489
48.3.4;Combining Grammars and Graphic Statics;489
48.4;Setup;489
48.4.1;Conceptual Overview;489
48.4.2;Elements;490
48.4.3;Rules;490
48.4.4;Constraints;490
48.4.5;Generation Algorithm;491
48.4.6;Sample Generation;491
48.5;Design Tests;491
48.5.1;Workflow;491
48.5.2;User interface;491
48.6;Results;493
48.6.1;Exploration of Parameters;494
48.6.1.1;Global Parameter 1: Reaction Angles;494
48.6.1.2;Global Parameter 2: Generation Count;497
48.6.1.3;Rule Parameters;497
48.6.2;Practical Applications;498
48.7;Conclusions;498
48.7.1;Contributions;498
48.7.1.1;More Trial and Less Error;498
48.7.1.2;Unbiased Exploration of Diverse Design Alternatives;498
48.7.1.3;Generative Graphic Statics: Beyond Reciprocity;499
48.7.2;Future Work;499
48.7.3;Closing Remark;499
48.8;References;499
49;42 ShapeOp---A Robust and Extensible Geometric Modelling Paradigm;501
49.1;Abstract;501
49.2;Introduction;501
49.3;Related Work;502
49.4;Solver;503
49.4.1;Local Step;503
49.4.2;Global Step;503
49.5;Projections;504
49.6;Implementation;505
49.7;Rhino/Ghpython Implementation Examples;506
49.7.1;Design Process;506
49.7.2;Future Work;507
49.8;Conclusion;511
49.9;Acknowledgements;511
49.10;References;511
50;43 Iterating Towards Affordability;512
50.1;Abstract;512
50.2;Introduction;512
50.3;Prototypes;513
50.3.1;God's Eye;513
50.3.2;Halo Sukkah;514
50.3.3;Comparison of Technical Characteristics;515
50.3.4;Technical Characteristics---Comparison Table;516
50.4;Simulating Materiality;516
50.5;Construction and Fabrication Logistics;518
50.6;Conclusions;520
50.7;References;521
51;44 3dj: 3d Sampling Haptic and Optically Performative Textures Remixed from 3d Scans;522
51.1;Abstract;522
51.2;Introduction;522
51.3;Related Work;523
51.3.1;Sampling;523
51.3.2;Personal 3D Scanning;523
51.3.3;Procedural Texture Generation;524
51.3.4;Virtual Clay;524
51.3.5;Textures, Patterns, Behaviours;524
51.3.6;Research Question;524
51.4;Methodology;525
51.4.1;Overview;525
51.4.2;Technical Framework and Implementation;525
51.4.3;3D Synthesis;525
51.4.4;3DJ;525
51.4.5;Analysis;530
51.5;Case Studies;531
51.5.1;Landscape and Camouflage Textures;531
51.5.2;Haptic Textures;532
51.5.3;Optical Textures;533
51.5.4;Case Study Summary;534
51.6;Conclusion;534
51.6.1;Summary;534
51.6.2;Potential Impact;534
51.6.3;Future Work;535
51.6.4;Concluding Remarks;535
51.7;Acknowledgments;535
51.8;References;535
52;Author Index;537
mehr

Autor