Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Nutritional Aspects of Osteoporosis

E-BookEPUBDRM AdobeE-Book
488 Seiten
Englisch
Elsevier Science & Techn.erschienen am27.07.20042. Auflage
This book is based on presentations given at the Fifth International Symposium on Nutritional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.

This book is based on presentations given at the Fifth International Symposium on Nutrional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.
mehr
Verfügbare Formate
E-BookEPUBDRM AdobeE-Book
EUR103,00
E-BookPDF1 - PDF WatermarkE-Book
EUR96,29

Produkt

KlappentextThis book is based on presentations given at the Fifth International Symposium on Nutritional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.

This book is based on presentations given at the Fifth International Symposium on Nutrional Aspects of Osteoporosis held in Lausanne, Switzerland in 2003. Although an often neglected chapter of medical research, the nutritional influences on bone health was a discussed topic at this congress. Also discussed were new insights into the role of proteins, vitamins, potassium, vegetables, food acid load, mineral waters and calcium.
Details
Weitere ISBN/GTIN9780080551104
ProduktartE-Book
EinbandartE-Book
FormatEPUB
Format HinweisDRM Adobe
Erscheinungsjahr2004
Erscheinungsdatum27.07.2004
Auflage2. Auflage
Seiten488 Seiten
SpracheEnglisch
Dateigrösse7222 Kbytes
Artikel-Nr.2745832
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Cover;1
2;Contents;6
3;Sponsors;4
4;Contributors;20
5;Preface;26
6;Part I: Calcium in Childhood;28
6.1;Chapter 1. Bone Mineral Density of the Skull and Lower Extremities During Growth and Calcium Supplementation;30
6.1.1;Abstract;30
6.1.2;Introduction;31
6.1.3;Methods;32
6.1.4;Results;33
6.1.5;Discussion;37
6.1.6;Acknowledgments;41
6.1.7;References;41
6.2;Chapter 2. Calcium Retention in Adolescence as a Function of Calcium Intake: Influence of Race and Gender;44
6.2.1;Abstract;44
6.2.2;Introduction;44
6.2.3;Methods for Determining Calcium Retention and Metabolism;45
6.2.4;Racial Differences in Calcium Metabolism;46
6.2.5;Gender Differences in Calcium Metabolism;48
6.2.6;Further Directions;49
6.2.7;References;49
6.3;Chapter 3. Longitudinal Study of Diet and Lifestyle Intervention on Bone Mineral Gain in School Children and Adolescents: Effects of Asian Traditional Diet and Sitting Style on Bone Mineral;52
6.3.1;Abstract;52
6.3.2;Introduction;53
6.3.3;Subjects and Methods;53
6.3.4;Results;54
6.3.5;Discussion;57
6.3.6;Acknowledgment;59
6.3.7;References;59
6.4;Chapter 4. A Co-Twin Calcium Intervention Trial in Premenarcheal Girls: Cortical Bone Effects by Hip Structural Analysis;62
6.4.1;Abstract;62
6.4.2;Introduction;63
6.4.3;Methods;64
6.4.4;Statistical Analyses;66
6.4.5;Results;66
6.4.6;Discussion;68
6.4.7;References;69
6.5;Chapter 5. Calcium Carbonate Supplementation is Associated with Higher Plasma IGF-1 in 16- to 18-Year-Old Boys and Girls;72
6.5.1;Abstract;72
6.5.2;Introduction ;73
6.5.3;Methods;74
6.5.4;Results;78
6.5.5;Discussion;81
6.5.6;Conclusions;82
6.5.7;Acknowledgments;83
6.5.8;References;83
7;Part II: Dairy Products, Calcium Metabolism;86
7.1;Chapter 6. Nutrients, Interactions, and Foods: The Importance of Source;88
7.1.1;Introduction;88
7.1.2;Calcium and Diet Quality;89
7.1.3;Calcium and Protein;92
7.1.4;Phosphorus and Calcium;94
7.1.5;Conclusion;101
7.1.6;References;101
8;Part III: Vitamins, Flavonoids;104
8.1;Chapter 7. Vitamin K and Bone Health;106
8.1.1;Abstract;106
8.1.2;Introduction;107
8.1.3;Sites of Vitamin K Action;108
8.1.4;Similarities Between Calcium Metabolism in Bone and Arteries;109
8.1.5;Vitamin K Status and Bone Health;111
8.1.6;Vitamin K Status and Cardiovascular Health;112
8.1.7;Vitamin K Intervention Studies;113
8.1.8;Dietary Vitamin K Requirements for Bone and Vascular Health;114
8.1.9;Safety and Potential Adverse Side Effects of Vitamin K Supplements;115
8.1.10;References;116
8.2;Chapter 8. Dietary Vitamin A is Negatively Related Density in Postmenopausal Woment to Bone Mineral;120
8.2.1;Abstract;120
8.2.2;Introduction;121
8.2.3;Methods;122
8.2.4;Results;125
8.2.5;Discussion;129
8.2.6;Summary and Conclusions;133
8.2.7;Acknowledgments;133
8.2.8;References ;133
8.3;Chapter 9. Hesperidin, a Citrus Flavanone, Improves Bone Acquisition and Prevents Skeletal Impairment in Rats;136
8.3.1;Abstract;136
8.3.2;Introduction;137
8.3.3;Methods;139
8.3.4;Results;142
8.3.5;Discussion;146
8.3.6;References;150
8.4;Chapter 10. Vitamin B-Complex, Methylenetetrahydrofolate Reductase Polymorphism and Bone: Potential for Gene-Nutrient Interaction;154
8.4.1;Abstract;154
8.4.2;Introduction;155
8.4.3;What is the Role of Methylene Tetrahydrofolate Reductase (MTHFR) Enzyme?;155
8.4.4;MTHFR Polymorphism;156
8.4.5;Vitamin B-Complex;159
8.4.6;Conclusions;162
8.4.7;References;162
9;Part IV: Nutrition and Bone Health Miscellaneous;166
9.1;Chapter 11. A Placebo Controlled Randomized Trial of Chromium Picolinate Supplementation on Indices of Bone and Calcium Metabolism in Healthy Women;168
9.1.1;Abstract;168
9.1.2;Subjects;171
9.1.3;Methods;171
9.1.4;Result;173
9.1.5;Discussion;174
9.1.6;Acknowledgments;177
9.1.7;References;177
9.2;Chapter 12. Nutrition and Teeth;180
9.2.1;Abstract;180
9.2.2;Introduction;181
9.2.3;Oral Bone Loss and Systemic Bone Mineral Density;181
9.2.4;Nutrition, Periodontal Disease and Tooth Loss;183
9.2.5;Relationship of Calcium, Vitamin D, and Phosphorus to Periodontal Disease and Tooth Loss;185
9.2.6;Conclusions;188
9.2.7;Summary;189
9.2.8;References;189
9.3;Chapter 13. Cognitive Dietary Restraint, Cortisol and Bone Density in Normal-Weight Women: Is There a Relationship?;192
9.3.1;Abstract;192
9.3.2;Introduction;193
9.3.3;Possible Mechanism;194
9.3.4;Assessment of Dietary Restraint;194
9.3.5;Associations Between Dietary Restraint and Menstrual Disturbances ;195
9.3.6;Associations Between Subclinical Menstrual Disturbances and Bone Loss;199
9.3.7;Associations Between Dietary Restraint and Cortisol;199
9.3.8;Association Between Dietary Restraint and Bone;200
9.3.9;Summary;202
9.3.10;Acknowledgments;202
9.3.11;References;202
10;Part V: Vitamin D First Part;206
10.1;Chapter 14. Functions of Vitamin D: Importance for Prevention of Common Cancers, Type 1 Diabetes and Heart Disease;208
10.1.1;Evolution of Vitamin D;208
10.1.2;Photosynthesis and Regulation of Previtamin D3;209
10.1.3;Vitamin D and Bone Health;210
10.1.4;Metabolism and Biologic Functions of Vitamin D;210
10.1.5;Prevalence and Consequences of Vitamin D Deficiency on Bone Health;213
10.1.6;Other Health Consequences of Vitamin D Deficiency: Increased Risk of Autoimmune Diseases, Solid Tumors, and Cardiovascular Heart Disease;216
10.1.7;Clinical Applications for the Antiproliferative Activity of l,25(OH)2D3 and its Analogs;220
10.1.8;Prevention and Treatment of Vitamin D Deficiency ;221
10.1.9;Conclusion;224
10.1.10;Acknowledgment;225
10.1.11;References;225
10.2;Chapter 15. Evidence for the Breakpoint of Normal Serum 25-Hydroxyvitamin D: Which Level Is Required in the Elderly?;230
10.2.1;Introduction;230
10.2.2;Assessing the Required Serum 25(OH)D Concentration;231
10.2.3;Evidence from Epidemiological and Intervention Studies ;232
10.2.4;The Influence of Calcium Intake on Serum PTH and Vitamin D Metabolism;233
10.2.5;Staging of Vitamin D Deficiency;234
10.2.6;Conclusion;234
10.2.7;References;235
10.3;Chapter 16. What is the Optimal Amount of Vitamin D for Osteoporosis?;238
10.3.1;Introduction;238
10.3.2;Vitamin D and Osteoporosis;240
10.3.3;Dosage Considerations;242
10.3.4;Hormonal l,25(OH)2D is not an Alternative to Nutritional Vitamin D;244
10.3.5;Summary;246
10.3.6;References ;247
11;Part VI: Vitamin D Second Part;252
11.1;Chapter 17. Serum 25-Hydroxyvitamin D and the Health of the Calcium Economy;254
11.1.1;Introduction;254
11.1.2;Studies of Calcium Absorption;255
11.1.3;Osteoporotic Fractures;258
11.1.4;Comment;259
11.1.5;References;259
11.2;Chapter 18. Defining Optimal 25-Hydroxyvitamin D Levels in Younger and Older Adults Based on Hip Bone Mineral Density;262
11.2.1;Abstract;262
11.2.2;PTH Versus BMD in Threshold Assessment for Optimal 25-OHD Levels;263
11.2.3;Rationale for Assessment of Optimal 25-OHD in the Non-White Population;264
11.2.4;Methods Applied to Study the Association Between 25-OHD and BMD in a Population-Based Sample;264
11.2.5;Results;265
11.2.6;Discussion;267
11.2.7;References ;269
11.3;Chapter 19. Vitamin D Supplementation in Postmenopausal Black Women Improves Calcium Homeostasis and Bone Turnover in Three Months;272
11.3.1;Abstract;272
11.3.2;Introduction;273
11.3.3;Methods;274
11.3.4;Results;275
11.3.5;Discussion;277
11.3.6;Acknowledgment;278
11.3.7;References;278
11.4;Chapter 20. Adherence to Vitamin D Supplementation in Elderly Patients After Hip Fracture;280
11.4.1;Abstract;280
11.4.2;Introduction;281
11.4.3;Patients and Methods;281
11.4.4;Results;283
11.4.5;Discussion;283
11.4.6;Conclusion;285
11.4.7;References;286
11.5;Chapter 21. Vitamin D Round Table;290
11.5.1;Introduction;290
11.5.2;What is the Optimal Level of 25(OH)D for the Skeleton and Why?;291
11.5.3;How Much Vitamin D3 is Needed to Reach the Optimal Level of 25(OH)D?;293
11.5.4;References;295
12;Part VII: Acid Load From Food First Part;298
12.1;Chapter 22. Effects of Diet Acid Load on Bone Health;300
12.1.1;Abstract;300
12.1.2;Determinants of the Setpoint at which Blood Acidity and Plasma Bicarbonate Concentration are Regulated in Normal Subjects;301
12.1.3;Chronic Metabolic Acidosis and Bone Wasting;306
12.1.4;Plasma Acid-Base Balance and Diet Acid Load in Humans;308
12.1.5;Crossing the Neutral Zone;315
12.1.6;Implications for Further Research;317
12.1.7;Acknowledgments;317
12.1.8;References;317
12.2;Chapter 23. Effect of Various Classes of Foodstuffs and Beverages of Vegetable Origin on Bone Metabolism in the Rat;324
12.2.1;Abstract;324
12.2.2;Materials and Methods;326
12.2.3;Results and Discussion;329
12.2.4;What Should We Eat?;336
12.2.5;References;338
12.3;Chapter 24. A Role for Fruit and Vegetables in Osteoporosis Prevention?;342
12.3.1;Abstract;342
12.3.2;Introduction;343
12.3.3;Importance of Acid-Base Homeostasis to Optimum Health;343
12.3.4;A Link Between Acid-Base Maintenance and Skeletal Integrity?;344
12.3.5;Acidity of Foods and Skeletal Health: Concept of Potential Renal Acid Loads;345
12.3.6;Positive Link Between Fruit and Vegetables, Alkali, and Bone Health: A Review of Current Evidence;346
12.3.7;Concept of NEAP and its Potential Impact on the Skeleton;348
12.3.8;Calcium/Alkali Supplements and Optimum Bone Health;351
12.3.9;Fruit and Vegetables and Bone: Exploring Other Important Factors;351
12.3.10;Concluding Remarks;351
12.3.11;Acknowledgments;352
12.3.12;References;352
13;Part VIII: Acid Load From Food Second Part;356
13.1;Chapter 25. The Ovine Model for the Study of Dietary Acid Base, Estrogen Depletion and Bone Health;358
13.1.1;Abstract;358
13.1.2;Introduction;359
13.1.3;Background and Significance;359
13.1.4;The Influence of Dietary Strong Ions;360
13.1.5;Determination of Dietary Acid Load;363
13.1.6;The Dairy Connection;365
13.1.7;Preliminary Studies;365
13.1.8;Effect of a Diet Low in Cation-Anion Balance on Bone Mineral Density in Mature Ovariectomized Ewes;366
13.1.9;Conclusion;372
13.1.10;Acknowledgments;372
13.1.11;References;373
13.2;Chapter 26. The Natural Dietary Potassium Intake of Humans: The Effect of Diet-Induced Potassium-Replete, Chloride-Sufficient, Chronic Low-Grade Metabolic Alkalosis, or Stone Age Diets for the 21st Century;376
13.2.1;Abstract;376
13.2.2;Ancestral Dietary Patterns;377
13.2.3;Ancestral Potassium Intakes;385
13.2.4;Acid-Base Relationship to Bone Health and Bone Mineral Density;387
13.2.5;Conclusions;388
13.2.6;Implications for Further Research;388
13.2.7;Acknowledgments;389
13.2.8;References;389
14;Part IX: Protein;394
14.1;Chapter 27. N-Acetyl Cysteine Supplementation of Growing Mice: Effects on Skeletal Size, Bone Mineral Density, and Serum IGF-I;396
14.1.1;Abstract;396
14.1.2;Introduction;397
14.1.3;Materials and Methods;398
14.1.4;Results;399
14.1.5;Discussion;402
14.1.6;References ;403
14.2;Chapter 28. Dietary Protein Intakes and Bone Strength;406
14.2.1;Introduction;406
14.2.2;Dietary Protein and Bone Mass Gain;407
14.2.3;Dietary Protein and Bone Mineral Mass;408
14.2.4;Dietary Protein and Bone Homeostasis;411
14.2.5;Effects of Correcting Protein Insufficiency;415
14.2.6;Dietary Protein and Fracture Risk;416
14.2.7;Conclusions;417
14.2.8;Acknowledgments;418
14.2.9;References;418
14.3;Chapter 29. Dietary Protein and the Skeleton;426
14.3.1;Abstract;426
14.3.2;Dietary Protein and Serum IGF-1;427
14.3.3;Protein and Acid-Base Balance;428
14.3.4;Protein and Urine Calcium Excretion;429
14.3.5;Protein and Calcium Absorption;429
14.3.6;Dietary Protein and Bone Turnover;430
14.3.7;Protein, Bone Loss, and Fractures;430
14.3.8;Potential Impact of Calcium Intake on Link Between Protein and Bone;432
14.3.9;References;433
15;Part X: Protein Mineral Water;438
15.1;Chapter 30. Milk Basic Protein Increases Bone Mineral Density and Improves Bone Metabolism in Humans;440
15.1.1;Abstract;440
15.1.2;Introduction;441
15.1.3;Human Study 1;443
15.1.4;Human Study 2;450
15.1.5;Conclusion;453
15.1.6;References;454
15.2;Chapter 31. Dietary Balance in Physically Active and Inactive Girls;458
15.2.1;Abstract;458
15.2.2;Introduction ;459
15.2.3;AIMS;460
15.2.4;Subjects and Methods;460
15.2.5;Results;460
15.2.6;Discussion;462
15.2.7;References ;464
15.3;Chapter 32. Mineral Waters: Effects on Bone and Bone Metabolism;466
15.3.1;Introduction;466
15.3.2;Calcium;467
15.3.3;Sodium;468
15.3.4;Sulfates;469
15.3.5;Carbonated Beverages;469
15.3.6;Fluoride;469
15.3.7;Acid Load;470
15.3.8;Alkaline Load;471
15.3.9;Potassium;472
15.3.10;Conclusions;472
15.3.11;References;472
16;Index ;476
mehr
Leseprobe
Contributors

Numbers in parentheses indicate the pages on which the authors' contributions begin.

Cheryl L. Ackert-Bicknell     (369) The Jackson Laboratory, Bar Harbor, Maine

Monica Adhikari     (141) Human Nutrition Unit, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Barbara Ambrose     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Patrick Ammann     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

Seiichiro Aoe     (413) Department of Home Economics, Otsuma Women's University, Chiyoda-ku, Tokyo, Japan

Nancy Badenhop-Stevens     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Susan I. Barr     (165) Department of Agricultural Sciences, University of British Columbia, Vancouver, British Columbia, Canada

Adam Baxter-Jones     (431) College of Kinesiology, University of Saskatchewan, Saskatoon, Canada

Wesley G. Beamer     (369) The Jackson Laboratory, Bar Harbor, Maine

Thomas Beck     (35) Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland

Heike A. Bischoff-Ferrari     (235) Division of Aging and Robert B. Brigham Arthritis and Musculoskeletal Diseases Clinical Research Center, Brigham and Women's Hospital, Boston, Massachusetts

Jackie Bishop     (431) Centre for Nutrition and Food Safety, School of Biomedical and Life Sciences, University of Surrey, Guildford, United Kingdom

Aubrey Blumsohn     (141) Bone Metabolism Group, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Jean-Philippe Bonjour     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

Rhonda A. Brownbill     (93) School of Allied Health, University of Connecticut, Storrs, Connecticut

Peter Burckhardt     (439) Department of Medicine, CHUV, Lausanne, Switzerland

Melissa Cameron     (35) Cancer Council, Victoria, Australia

Thierry Chevalley     (279) Division of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, University Hospital, Geneva, Switzerland

T.J. Cole     (45) Centre for Paediatric Epidemiology and Biostatistics, Institute of Child Health, London, United Kingdom

Cyrus Cooper     (431) MRC Environmental Epidemiology Unit, Southampton General Hospital, Southampton, United Kingdom

Felicia Cosman     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Véronique Coxam     (109) Unité des Maladies Métaboliques et Micronutriments, Groupe Ostéoporose, INRA de Theix, France

Neal E. Craft     (93) Craft Technologies, Inc., Wilson, North Carolina

Zeljka Crncevic-Orlic     (3) Department of Endocrinology, University of Rijeka, Rijeka, Croatia

Bess Dawson-Hughes     (235, 263, 399) Bone Metabolism Laboratory, Jean Mayer U.S.D.A. Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts

Richard Eastell     (141) Bone Metabolism Group, University of Sheffield, Northern General Hospital, Sheffield, United Kingdom

Mark Forwood     (35) Anatomy and Developmental Biology, The University of Queensland, Brisbane, Australia

Lynda A. Frassetto     (273, 349) Department of Medicine and General Clinical Research Center, University of California, San Francisco, California

Harold C. Furr     (93) Craft Technologies, Inc., Wilson, North Carolina

Fiona Ginty     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

Prem Goel     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Eun-Jeong Ha     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Mizuho Hara     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

Robert P. Heaney     (61, 227, 263) University Chair, Creighton University, Omaha, Nebraska

Kenji Hirota     (25) Department of Obstetrics and Gynecology, Nissei Hospital, Osaka, Japan

Takako Hirota     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

Michael F. Holick     (181, 263) Department of Endocrinology, Boston University School of Medicine, Boston, Massachusetts

Marie-Noëlle Horcajada     (109) Unité des Maladies Métaboliques et Micronutriments, Groupe Ostéoporose, INRA de Theix, France

Jasminka Z. Ilich     (93) School of Allied Health, University of Connecticut, Storrs, Connecticut

S. Ish-Shalom     (253) Metabolic Bone Diseases Unit, Rambam Medical Center and The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

Akira Itabashi     (413) Department of Clinical Laboratory Medicine, Saitama Medical School, Saitama, Japan

S. Jones     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

Susan Kantor     (35) Department of Medicine, Royal Melbourne Hospital, University of Melborne, Victoria, Australia

Elizabeth A. Krall     (153) Department of Health Policy and Health Services Research, Boston University School of Dental Medicine, Boston, Massachusetts

Tomoko Kusu     (25) Research Laboratory, Tsuji Academy of Nutrition, Osaka, Japan

A. Laidlaw     (45) Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom

John D. Landoll     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Bin Li     (3) Osteoporosis Prevention and Treatment Center, Bone and Mineral Metabolism Laboratory, and Department of Statistics, Columbus, Ohio

Robert Lindsay     (245) Clinical Research, Helen Hayes Hospital, West Haverstraw, New York

Paul Lips     (203, 263) Department of Endocrinology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

H.M. Macdonald     (127) Osteoporosis Research Unit, Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, United Kingdom

Jennifer M. Macleay     (331) College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Velimir Matkovic     (3) Osteoporosis Prevention and Treatment Center, Bone and...
mehr

Autor