Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Hilbert Transform Applications in Mechanical Vibration

E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
320 Seiten
Englisch
Wiley-IEEE Presserschienen am09.03.20111. Auflage
Hilbert Transform Applications in Mechanical Vibration addresses recent advances in theory and applications of the Hilbert transform to vibration engineering, enabling laboratory dynamic tests to be performed more rapidly and accurately. The author integrates important pioneering developments in signal processing and mathematical models with typical properties of mechanical dynamic constructions such as resonance, nonlinear stiffness and damping. A comprehensive account of the main applications is provided, covering dynamic testing and the extraction of the modal parameters of nonlinear vibration systems, including the initial elastic and damping force characteristics. This unique merger of technical properties and digital signal processing allows the instant solution of a variety of engineering problems and the in-depth exploration of the physics of vibration by analysis, identification and simulation.
This book will appeal to both professionals and students working in mechanical, aerospace, and civil engineering, as well as naval architecture, biomechanics, robotics, and mechatronics.

Hilbert Transform Applications in Mechanical Vibration employs modern applications of the Hilbert transform time domain methods including:
The Hilbert Vibration Decomposition method for adaptive separation of a multi-component non-stationary vibration signal into simple quasi-harmonic components; this method is characterized by high frequency resolution, which provides a comprehensive account of the case of amplitude and frequency modulated vibration analysis.
The FREEVIB and FORCEVIB main applications, covering dynamic testing and extraction of the modal parameters of nonlinear vibration systems including the initial elastic and damping force characteristics under free and forced vibration regimes. Identification methods contribute to efficient and accurate testing of vibration systems, avoiding effort-consuming measurement and analysis.
Precise identification of nonlinear and asymmetric systems considering high frequency harmonics on the base of the congruent envelope and congruent frequency.
Accompanied by a website at www.wiley.com/go/feldman, housing MATLAB®/ SIMULINK codes.


Michael Feldman, Technion, Israel
Michael Feldman is Computer System Engineer and Adjunct Senior Lecturer in the Faculty of Mechanical Engineering, Technion. His research focuses on signal processing, vibration engineering; analysis of dynamic signals and mechanical systems, modal testing and monitoring and diagnostics of machines. He is a past editor of the Journal Mechanical Systems and Signal Processing and has authored two books in Russian as well as contributions to the Encyclopedia of Structural Health Monitoring (Wiley, 2009) and Encyclopedia of Vibration (Academic Press, 2001).
mehr
Verfügbare Formate
BuchGebunden
EUR145,50
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR114,99
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR114,99

Produkt

KlappentextHilbert Transform Applications in Mechanical Vibration addresses recent advances in theory and applications of the Hilbert transform to vibration engineering, enabling laboratory dynamic tests to be performed more rapidly and accurately. The author integrates important pioneering developments in signal processing and mathematical models with typical properties of mechanical dynamic constructions such as resonance, nonlinear stiffness and damping. A comprehensive account of the main applications is provided, covering dynamic testing and the extraction of the modal parameters of nonlinear vibration systems, including the initial elastic and damping force characteristics. This unique merger of technical properties and digital signal processing allows the instant solution of a variety of engineering problems and the in-depth exploration of the physics of vibration by analysis, identification and simulation.
This book will appeal to both professionals and students working in mechanical, aerospace, and civil engineering, as well as naval architecture, biomechanics, robotics, and mechatronics.

Hilbert Transform Applications in Mechanical Vibration employs modern applications of the Hilbert transform time domain methods including:
The Hilbert Vibration Decomposition method for adaptive separation of a multi-component non-stationary vibration signal into simple quasi-harmonic components; this method is characterized by high frequency resolution, which provides a comprehensive account of the case of amplitude and frequency modulated vibration analysis.
The FREEVIB and FORCEVIB main applications, covering dynamic testing and extraction of the modal parameters of nonlinear vibration systems including the initial elastic and damping force characteristics under free and forced vibration regimes. Identification methods contribute to efficient and accurate testing of vibration systems, avoiding effort-consuming measurement and analysis.
Precise identification of nonlinear and asymmetric systems considering high frequency harmonics on the base of the congruent envelope and congruent frequency.
Accompanied by a website at www.wiley.com/go/feldman, housing MATLAB®/ SIMULINK codes.


Michael Feldman, Technion, Israel
Michael Feldman is Computer System Engineer and Adjunct Senior Lecturer in the Faculty of Mechanical Engineering, Technion. His research focuses on signal processing, vibration engineering; analysis of dynamic signals and mechanical systems, modal testing and monitoring and diagnostics of machines. He is a past editor of the Journal Mechanical Systems and Signal Processing and has authored two books in Russian as well as contributions to the Encyclopedia of Structural Health Monitoring (Wiley, 2009) and Encyclopedia of Vibration (Academic Press, 2001).
Details
Weitere ISBN/GTIN9781119991649
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Erscheinungsjahr2011
Erscheinungsdatum09.03.2011
Auflage1. Auflage
Seiten320 Seiten
SpracheEnglisch
Dateigrösse14436 Kbytes
Artikel-Nr.2764349
Rubriken
Genre9201