Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Molecular Biology of B Cells

E-BookEPUBDRM AdobeE-Book
600 Seiten
Englisch
Elsevier Science & Techn.erschienen am09.10.20142. Auflage
Molecular Biology of B Cells, Second Edition is a comprehensive reference to how B cells are generated, selected, activated and engaged in antibody production. All of these developmental and stimulatory processes are described in molecular, immunological, and genetic terms to give a clear understanding of complex phenotypes.

Molecular Biology of B Cells, Second Edition offers an integrated view of all aspects of B cells to produce a normal immune response as a constant, and the molecular basis of numerous diseases due to B cell abnormality.  The new edition continues its success with updated research on microRNAs in B cell development and immunity, new developments in understanding lymphoma biology, and therapeutic targeting of B cells for clinical application.  With updated research and continued comprehensive coverage of all aspects of B cell biology, Molecular Biology of B Cells, Second Edition is the definitive resource, vital for researchers across molecular biology, immunology and genetics.

Covers signaling mechanisms regulating B cell differentiation
Provides information on the development of therapeutics using monoclonal antibodies and clinical application of Ab
Contains studies on B cell tumors from various stages of B lymphocytes
Offers an integrated view of all aspects of B cells to produce a normal immune response
mehr
Verfügbare Formate
BuchGebunden
EUR179,50
BuchGebunden
EUR193,50
E-BookEPUBDRM AdobeE-Book
EUR175,00
E-BookEPUBDRM AdobeE-Book
EUR137,00
E-BookEPUBDRM AdobeE-Book
EUR175,00

Produkt

KlappentextMolecular Biology of B Cells, Second Edition is a comprehensive reference to how B cells are generated, selected, activated and engaged in antibody production. All of these developmental and stimulatory processes are described in molecular, immunological, and genetic terms to give a clear understanding of complex phenotypes.

Molecular Biology of B Cells, Second Edition offers an integrated view of all aspects of B cells to produce a normal immune response as a constant, and the molecular basis of numerous diseases due to B cell abnormality.  The new edition continues its success with updated research on microRNAs in B cell development and immunity, new developments in understanding lymphoma biology, and therapeutic targeting of B cells for clinical application.  With updated research and continued comprehensive coverage of all aspects of B cell biology, Molecular Biology of B Cells, Second Edition is the definitive resource, vital for researchers across molecular biology, immunology and genetics.

Covers signaling mechanisms regulating B cell differentiation
Provides information on the development of therapeutics using monoclonal antibodies and clinical application of Ab
Contains studies on B cell tumors from various stages of B lymphocytes
Offers an integrated view of all aspects of B cells to produce a normal immune response
Details
Weitere ISBN/GTIN9780123984906
ProduktartE-Book
EinbandartE-Book
FormatEPUB
Format HinweisDRM Adobe
Erscheinungsjahr2014
Erscheinungsdatum09.10.2014
Auflage2. Auflage
Seiten600 Seiten
SpracheEnglisch
Artikel-Nr.3135017
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Front Cover;1
2;Molecular Biology of B Cells;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;18
7;Contributors;20
8;Chapter 1 - The Structure and Regulation of the Immunoglobulin Loci;24
8.1;1. INTRODUCTION;24
8.2;2. GENOMIC ORGANIZATION OF THE MOUSE IMMUNOGLOBULIN HEAVY CHAIN LOCUS;24
8.3;3. GENOMIC ORGANIZATION OF THE MOUSE IMMUNOGLOBULIN KAPPA LIGHT CHAIN LOCUS;26
8.4;4. GENOMIC ORGANIZATION OF THE MOUSE IMMUNOGLOBULIN LAMBDA LIGHT CHAIN LOCUS;26
8.5;5. B CELL DEVELOPMENT AND REGULATION OF V(D)J RECOMBINATION;26
8.6;6. JUNCTIONAL DIVERSITY;28
8.7;7. COMBINATORIAL DIVERSITY;28
8.8;8. NONCODING TRANSCRIPTION AND IMMUNOGLOBULIN LOCUS REARRANGEMENT;29
8.9;9. THE PROCESS OF DH-JH RECOMBINATION;29
8.10;10. EPIGENETICS AND IMMUNOGLOBULIN LOCUS REARRANGEMENT;29
8.11;11. INSULATORS AND IMMUNOGLOBULIN LOCUS REARRANGEMENT;30
8.12;12. 3D STRUCTURE AND COMPACTION OF THE IMMUNOGLOBULIN HEAVY CHAIN LOCUS;30
8.13;13. CONCLUSION;30
8.14;REFERENCES;31
9;Chapter 2 - The Mechanism of V(D)J Recombination;36
9.1;1. OVERVIEW;36
9.2;2. ANTIGEN RECEPTOR GENE ASSEMBLY;36
9.3;3. RECOMBINATION SIGNAL SEQUENCES;38
9.4;4. BIOCHEMISTRY OF V(D)J CLEAVAGE;39
9.5;5. RAG1 AND RAG2;40
9.6;6. A ROLE FOR HMGB1 IN V(D)J RECOMBINATION;41
9.7;7. RECOMBINATION COMPLEXES: ANALYSIS OF STOICHIOMETRY AND ORGANIZATION;42
9.8;8. V(D)J RECOMBINATION IS TIGHTLY REGULATED DURING LYMPHOCYTE DEVELOPMENT;43
9.9;9. ACCESSIBILITY MODEL OF REGULATION;44
9.10;10. OVERVIEW OF CHROMATIN STRUCTURE;44
9.11;11. REGULATION BY NUCLEOSOME STRUCTURE AND HISTONE ACETYLATION;44
9.12;12. REGULATION BY HISTONE METHYLATION;45
9.13;13. HOW IS THE CHROMATIN STRUCTURE OF ANTIGEN RECEPTOR LOCI DEVELOPMENTALLY REGULATED?;45
9.14;14. ADDITIONAL LAYERS OF REGULATION;46
9.15;15. REGULATION OF V(D)J RECOMBINATION: SUMMARY;46
9.16;16. ONCOGENIC LESIONS IN LYMPHOID NEOPLASMS: THE PRICE OF A DIVERSE ANTIGEN RECEPTOR REPERTOIRE;47
9.17;17. PROPOSED MECHANISMS UNDERLYING RAG-MEDIATED GENOMIC LESIONS;47
9.18;18. REGULATORY CONTROLS PROPOSED TO SUPPRESS RAG-MEDIATED GENOMIC INSTABILITY;49
9.19;19. V(D)J RECOMBINATION ERRORS AS PATHOGENIC LESIONS IN LYMPHOID NEOPLASMS: SUMMARY;51
9.20;REFERENCES;51
10;Chapter 3 - Transcriptional Regulation of Early B Cell Development;58
10.1;1. PU.1 SETS THE STAGE FOR LYMPHOID AND MYELOID DEVELOPMENT;58
10.2;2. LINEAGE PRIMING IN LYMPHOID PROGENITORS BY IKAROS;61
10.3;3. E2A REGULATES THE CHROMATIN LANDSCAPE TO PROMOTE GENE EXPRESSION IN B CELL DEVELOPMENT;62
10.4;4. E2A IS INHIBITED BY ID PROTEINS;64
10.5;5. INTERLEUKIN-7/STAT5 SIGNALING PROVIDES AN EARLY SIGNAL FOR B CELL LINEAGE SPECIFICATION;64
10.6;6. EARLY B CELL FACTOR: CENTRAL COORDINATOR OF B CELL DEVELOPMENT;65
10.7;7. COLLABORATION BETWEEN EBF1 AND FOXO1;66
10.8;8. REGULATION OF THE B CELL-SPECIFIC PROGRAM BY PAX5;67
10.9;9. REGULATION OF B LINEAGE COMMITMENT;69
10.10;10. CONCLUSION;70
10.11;ACKNOWLEDGMENT;70
10.12;REFERENCES;70
11;Chapter 4 - Relationships among B Cell Populations Revealed by Global Gene Analysis;78
11.1;1. INTRODUCTION;78
11.2;2. GENE PROFILE CHANGES WITH B CELL MATURATION SUGGEST AN ORDERING OF TRANSITIONAL STAGES;78
11.3;3. DISTINCTIONS IN GENE NETWORKS ACTIVATED IN MATURE B CELL POPULATIONS;81
11.4;4. FO/B2 B CELLS IN DIFFERENT TISSUES ARE SIMILAR, BUT SPECIALIZATION WITH LOCATION EMERGES;83
11.5;5. CONCLUSIONS;84
11.6;ACKNOWLEDGMENT;86
11.7;REFERENCES;86
12;Chapter 5 - Roles of MicroRNAs in B Lymphocyte Physiology and Oncogenesis;88
12.1;1. INTRODUCTION;88
12.2;2. CONTROL OF CELL SURVIVAL AND PROLIFERATION BY MIR-17~92 IN B CELL DEVELOPMENT AND LYMPHOMAGENESIS;89
12.3;3. THE PROBLEM OF MIRNA TARGET IDENTIFICATION AND VALIDATION;91
12.4;4. MIR-155 IN GERMINAL CENTER B CELLS AND LYMPHOMAGENESIS;91
12.5;5. DISCOVERY OF AN ELUSIVE TUMOR SUPPRESSOR: MIR-15A~16-1 CLUSTER;92
12.6;6. LIN28B REGULATES THE FETAL-ADULT B CELL DEVELOPMENT SWITCH;92
12.7;7. TO BE FURTHER DETERMINED;93
12.8;8. CONCLUDING REMARKS;94
12.9;ACKNOWLEDGMENTS;94
12.10;REFERENCES;94
13;Chapter 6 - Proliferation and Differentiation Programs of Developing B Cells;98
13.1;1. PROLIFERATION AND DIFFERENTIATION PROGRAMS AT THE PRO-B CELL STAGE;99
13.2;2. PROLIFERATION AND DIFFERENTIATION PROGRAMS AT THE PRE-B CELL STAGE;103
13.3;3. SELECTION MECHANISMS AT THE IMMATURE B CELL STAGE;111
13.4;REFERENCES;114
14;Chapter 7 - Development and Function of B Cell Subsets;122
14.1;1. INTRODUCTION;122
14.2;2. B-1, MARGINAL ZONE AND FOLLICULAR B CELLS;122
14.3;3. MECHANISMS FOR THE COMPARTMENTALIZATION OF B-CELL SUBSETS;126
14.4;4. SELECTION AND DIFFERENTIAL SURVIVAL MECHANISMS: BCR SIGNALING, COMPOSITION, AND SPECIFICITY;132
14.5;5. OTHER FACTORS INVOLVED IN THE FORMATION OF B-CELL SUBSETS;135
14.6;6. HOMEOSTASIS OF B-CELL SUBSETS AND REPERTOIRES;135
14.7;7. CONCLUSION;136
14.8;ACKNOWLEDGMENT;136
14.9;REFERENCES;136
15;Chapter 8 - B Cells and Antibodies in Jawless Vertebrates;144
15.1;1. INTRODUCTION;144
15.2;2. LAMPREYS AND HAGFISH HAVE THREE TYPES OF VLR GENES;144
15.3;3. VLR GENE ASSEMBLY MECHANISM AND SEQUENCE DIVERSITY;144
15.4;4. LAMPREY CDA1 AND CDA2;147
15.5;5. VLRA, VLRB, AND VLRC ARE EXPRESSED BY DIFFERENT LYMPHOCYTE POPULATIONS;147
15.6;6. CHARACTERIZATION OF B-LIKE AND TWO T-LIKE LYMPHOCYTE POPULATIONS IN CYCLOSTOMES;147
15.7;7. VLRA+, VLRB+, AND VLRC+ CELLS HAVE DISTINCT GENE EXPRESSION PROFILES;148
15.8;8. GENERATION OF THE T-LIKE AND B-LIKE CELLS IN LAMPREYS;149
15.9;9. THE UNIQUE STRUCTURE OF VLRB ANTIBODIES;150
15.10;10. VLRB MONOCLONAL ANTIBODIES;150
15.11;11. STRUCTURE OF VLR ANTIGEN-BINDING DOMAINS;151
15.12;12. STRUCTURES OF VLRB ANTIBODY-ANTIGEN COMPLEXES;152
15.13;13. CONCLUSION;153
15.14;REFERENCES;154
16;Chapter 9 - The Origin of V(D)J Diversification;156
16.1;1. THE ALIEN SEED;156
16.2;2. THE EVOLUTION OF BCR AND TCR LOCI;162
16.3;3. CONSIDERATIONS ON THE UR-V GENE;165
16.4;4. CONCLUDING REMARKS;169
16.5;ACKNOWLEDGMENTS;169
16.6;REFERENCES;169
17;Chapter 10 - Structure and Signaling Function of the B-Cell Antigen Receptor and Its Coreceptors;174
17.1;1. INTRODUCTION;174
17.2;2. BASIC STRUCTURE OF THE BCR COMPLEX;174
17.3;3. BCR ACTIVATION MODELS;176
17.4;4. THE RESTING STATE OF THE BCR;177
17.5;5. INTERACTION OF THE BCR WITH SIGNAL-TRANSDUCING KINASES AND ADAPTORS;178
17.6;6. BCR CORECEPTORS CD19 AND CD22;179
17.7;7. CD19 FUNCTIONS IN A COMPLEX WITH CD21 AND CD81;179
17.8;8. SIGNALING BY THE CD19 TAIL;180
17.9;9. HUMAN MUTATIONS IN THE CD19/CD21/CD81 COMPLEX;181
17.10;10. CD22: AN INHIBITORY RECEPTOR;181
17.11;11. REGULATION OF CD22 SIGNALING BY LIGAND INTERACTIONS;183
17.12;12. THE ROLE OF CD22 IN PREVENTING AUTOIMMUNITY;184
17.13;13. BCR-CONTROLLED SIGNALING PROCESSES;184
17.14;14. BCR-MEDIATED ADAPTOR AND PLCG2 ACTIVATION;184
17.15;15. IP3 PROMOTES CALCIUM RELEASE AND ACTIVATION OF NUCLEAR FACTOR OF ACTIVATED T CELLS;185
17.16;16. DAG AND NUCLEAR FACTOR-.B ACTIVATION;186
17.17;17. ACTIVATION OF THE PI3K PATHWAY;186
17.18;18. AKT AND FOXO REGULATION;187
17.19;ACKNOWLEDGMENT;187
17.20;REFERENCES;187
18;Chapter 11 - Fc and Complement Receptors;194
18.1;1. CONSEQUENCES OF FCGRIIB DEFICIENCY;194
18.2;2. CONSEQUENCES OF COMPLEMENT AND COMPLEMENT RECEPTOR DEFICIENCIES;196
18.3;3. FC RECEPTORS;196
18.4;4. COMPLEMENT RECEPTORS;202
18.5;5. CORECEPTOR SIGNALING VERSUS ANTIGEN LOCALIZATION TO FDCS;203
18.6;6. FRONTIERS: COMPLEMENT VERSUS FC RECEPTORS;206
18.7;REFERENCES;207
19;Chapter 12 - B Cell Localization and Migration in Health and Disease;210
19.1;1. INTRODUCTION;210
19.2;2. MIGRATION OF B CELLS IN THE BONE MARROW;211
19.3;3. MIGRATION OF B CELLS INTO AND WITHIN SLOS;212
19.4;4. LOCATION AND MIGRATION OF ANTIBODY-SECRETING CELLS;220
19.5;5. BODY CAVITY B-1 B CELL TRAFFICKING;222
19.6;6. MUCOSAL B CELL MIGRATION;223
19.7;7. HOMING OF B CELLS DURING CHRONIC INFLAMMATION AND TERTIARY LYMPHOID ORGAN FORMATION;225
19.8;8. MIGRATION OF NEOPLASTIC B CELLS;226
19.9;9. CONCLUSION;229
19.10;REFERENCES;229
20;Chapter 13 - B Cells as Regulators;238
20.1;1. INTRODUCTION;238
20.2;2. REGULATORY ROLE OF B CELLS IN UC;238
20.3;3. PROTECTIVE FUNCTION OF B CELLS IN EAE;240
20.4;4. REGULATORY ROLES OF B CELLS IN SYSTEMIC LUPUS ERYTHEMATOSUS;242
20.5;5. REGULATORY ROLE OF B CELLS IN BACTERIAL INFECTIONS;243
20.6;6. CHARACTERIZATION AND FUNCTION OF IL-10-PRODUCING B CELLS IN HUMANS;244
20.7;7. CONCLUDING REMARKS;245
20.8;CONFLICT OF INTEREST;245
20.9;ACKNOWLEDGMENTS;245
20.10;REFERENCES;245
21;Chapter 14 - B CELL MEMORY AND PLASMA CELL DEVELOPMENT;250
21.1;1. MEMORY B CELL MARKERS;250
21.2;2. PROPERTIES OF MEMORY B CELLS;250
21.3;3. DIVERSITY WITHIN THE MEMORY COMPARTMENT;250
21.4;GENERATION OF MEMORY B CELLS;250
21.5;4. DYNAMICS IN B CELL RESPONSE TOWARD MEMORY FORMATION;251
21.6;5. SELECTION OF HIGH-AFFINITY MEMORY B CELLS IN GCS;251
21.7;6. HOW MEMORY B CELLS DEVELOP IN THE GC REACTION;252
21.8;7. GC-INDEPENDENT MEMORY B CELLS;252
21.9;8. GC-INDEPENDENT AND -DEPENDENT MEMORY B CELLS DEVELOP WITH THE HELP OF DIFFERENT T-CELL SUBSETS;252
21.10;9. GC-INDEPENDENT AND -DEPENDENT MEMORY B CELLS ARE INVOLVED IN THE SECONDARY RESPONSE;253
21.11;REFERENCES;253
21.12;1. INTRODUCTION;255
21.13;2. PLASMA CELL SUBSETS;256
21.14;3. CELLULAR ASPECTS OF PLASMA CELL DIFFERENTIATION;257
21.15;4. MOLECULAR BIOLOGY OF PLASMA CELL DIFFERENTIATION;262
21.16;5. PLASMA CELL SURVIVAL;263
21.17;6. PLASMA CELL SURVIVAL MOLECULES;264
21.18;REFERENCES;264
21.19;1. HOW DOES THE PATHOGENIC PLASMA CELL MEMORY ARISE?;267
21.20;2. PLASMA CELL NICHES;268
21.21;3. HOW TO TARGET MEMORY PLASMA CELLS;269
21.22;4. DIRECT PLASMA CELL TARGETING;269
21.23;REFERENCES;271
22;Chapter 15 - The Role of the BAFF and LymphotoxinPathways in B Cell Biology;274
22.1;1. BAFF/APRIL: Important Regulators of B Cell Survival, Homeostasis, and Function;274
22.1.1;1. BAFF/APRIL: Important Regulators of B Cell Survival, Homeostasis, and Function;274
22.1.2;2. THE LYMPHOTOXIN PATHWAY: SHAPING B CELL ENVIRONMENTS;284
22.1.3;3. CONCLUSIONS AND PERSPECTIVES;292
22.1.4;REFERENCES;292
23;Chapter 16 - The Mucosal Immune System: Host-Bacteria Interaction and Regulation of Immunoglobulin A Synthesis;300
23.1;1. INTRODUCTION;300
23.2;2. GEOGRAPHY, REGULATION, AND PROPERTIES OF GUT IMMUNOGLOBULIN A;300
23.3;3. SYNTHESIS OF GUT IMMUNOGLOBULIN A;301
23.4;4. T CELL-DEPENDENT IMMUNOGLOBULIN A INDUCTION;301
23.5;5. T CELL-INDEPENDENT IMMUNOGLOBULIN A INDUCTION;305
23.6;6. FUNCTION OF IMMUNOGLOBULIN A;308
23.7;7. CLINICAL RELEVANCE;308
23.8;8. CONCLUSIONS;309
23.9;REFERENCES;309
24;Chapter 17 - Gut Microbiota and Their Regulation;316
24.1;1. MICROBIOTA;316
24.2;2. MICROBES, PRIMARY IG DIVERSIFICATION, AND EARLY LIFE B CELL SELECTION;317
24.3;3. MICROBIAL INFLUENCE ON IGA PRODUCTION;320
24.4;4. MICROBIAL INFLUENCE ON IGE PRODUCTION;322
24.5;5. B-LINEAGE CELL INFLUENCE ON COMMENSAL MICROBES;323
24.6;6. CONCLUSION;325
24.7;REFERENCES;325
25;Chapter 18 - Molecular Mechanisms of AID Function;328
25.1;1. INTRODUCTION;328
25.2;2. AID STRUCTURE AND FUNCTION;329
25.3;3. AID S MOLECULAR MECHANISM OF DNA CLEAVAGE AND RECOMBINATION;335
25.4;4. THE MECHANISM OF AID S SPECIFICITY DETERMINATION FOR DNA CLEAVAGE;343
25.5;5. REGULATION OF AID EXPRESSION;351
25.6;6. CONCLUDING REMARKS;354
25.7;REFERENCES;355
26;Chapter 19 - The Mechanism of IgH Class Switch Recombination;368
26.1;1. ANTIBODY CLASS;368
26.2;2. ORGANIZATION OF MOUSE IGH LOCUS;368
26.3;3. A TWO-STEP MODEL OF CSR;370
26.4;4. MECHANISMS BY WHICH AID INITIATES CSR AND SHM;370
26.5;5. GERMLINE S REGION TRANSCRIPTION TARGETS AID ACTIVITY DURING CSR;371
26.6;6. ROLE OF TRANSCRIPTION STALLING IN AID TARGETING;372
26.7;7. AID COFACTORS FACILITATE AID ACCESS TO ITS SSDNA SUBSTRATES;373
26.8;8. DIFFERENTIAL AID TARGETING AND OUTCOMES DURING CSR AND SHM;373
26.9;9. LONG-RANGE JOINING OF S REGION BREAKS;374
26.10;10. CLASSICAL NONHOMOLOGOUS END JOINING;375
26.11;11. ALTERNATIVE END JOINING;376
26.12;12. CHROMOSOMAL TRANSLOCATION IN LYMPHOMAS CAUSED BY ABERRANT CSR;377
26.13;13. EVOLUTION OF THE IGH CSR MECHANISM;378
26.14;ACKNOWLEDGMENTS;379
26.15;REFERENCES;379
27;Chapter 20 - Somatic Hypermutation: The Molecular Mechanisms Underlying the Production of Effective High-Affinity Antibodies;386
27.1;1. INTRODUCTION;386
27.2;2. ACTIVATION-INDUCED CYTIDINE DEAMINASE IN SOMATIC HYPERMUTATION;388
27.3;3. TARGETING OF THE SHM;391
27.4;4. ACTIVATION-INDUCED CYTIDINE DEAMINASE AND DOWNSTREAM REPAIR PATHWAYS;394
27.5;5. MISMATCH REPAIR IN SOMATIC HYPERMUTATION;396
27.6;6. BASE EXCISION REPAIR IN SOMATIC HYPERMUTATION;401
27.7;7. CONCLUSION;403
27.8;REFERENCES;403
28;Chapter 21 - Aberrant AID Expression by Pathogen Infection;412
28.1;1. INTRODUCTION;412
28.2;2. PHYSIOLOGIC ROLE OF ACTIVATION-INDUCED CYTIDINE DEAMINASE;412
28.3;3. AID INDUCTION IN B CELLS;413
28.4;4. REGULATION OF AID EXPRESSION IN B CELLS;413
28.5;5. ABERRANT AID EXPRESSION BY PATHOGEN INFECTION AND TUMORIGENESIS;414
28.6;6. CONCLUSION;416
28.7;REFERENCES;417
29;Chapter 22 - Molecular Pathogenesis of B Cell Lymphomas;422
29.1;1. INTRODUCTION;422
29.2;2. THE CELL OF ORIGIN OF LYMPHOMAS;422
29.3;3. MECHANISMS OF GENETIC LESION IN LYMPHOMA;424
29.4;4. MOLECULAR PATHOGENESIS OF MOST COMMON LYMPHOMA TYPES;426
29.5;REFERENCES;432
30;Chapter 23 - B Cells Producing Pathogenic Autoantibodies;440
30.1;1. ORIGIN OF AUTOANTIBODIES;440
30.2;2. IMMUNODEFICIENCY, B CELL MALIGNANCY, AND AUTOREACTIVITY;448
30.3;3. FEATURES OF PATHOGENIC AUTOANTIBODIES;449
30.4;4. EFFECTOR MECHANISMS OF PATHOGENIC AUTOANTIBODIES;451
30.5;5. B CELLS AS THE THERAPEUTIC TARGET IN AUTOIMMUNE DISEASE;454
30.6;6. CONCLUSION;456
30.7;REFERENCES;456
31;Chapter 24 - The Cellular and Molecular Biology of HIV-1 Broadly Neutralizing Antibodies;464
31.1;1. INTRODUCTION;464
31.2;2. HIGHLY CONSERVED STRUCTURES ON HIV-1 ENV;465
31.3;3. MECHANISMS OF HIV-1 NEUTRALIZATION BY ANTIBODIES;466
31.4;4. ROLE OF NEUTRALIZING ANTIBODIES IN PROTECTION FROM HIV-1 TRANSMISSION;469
31.5;5. BIOLOGY OF BROAD NEUTRALIZING ANTIBODY DEVELOPMENT;469
31.6;6. CHARACTERISTICS OF HIV-1 ENV NEUTRALIZING ANTIBODIES;472
31.7;7. HIV-1 ENV ANTIBODIES INDUCED BY CURRENT HIV VACCINE CANDIDATES;475
31.8;8. NEW STRATEGIES FOR INDUCTION OF HIV-1 BNABS;476
31.9;9. SUMMARY;478
31.10;REFERENCES;478
32;Chapter 25 - Immune Deficiencies Caused by B Cell Defects;486
32.1;1. DEFECTS IN B CELL DEVELOPMENT;487
32.2;2. DEFECTS IN B CELL MIGRATION;490
32.3;3. DEFECTS IN B CELL SURVIVAL;491
32.4;4. DEFECTS IN B CELL ACTIVATION;493
32.5;5. PADS WITH UNKNOWN ETIOLOGY;497
32.6;6. THERAPEUTIC APPROACHES;498
32.7;7. CONCLUSION;498
32.8;REFERENCES;498
33;Chapter 26 - IMGT® Immunoglobulin Repertoire Analysis and Antibody Humanization;504
33.1;1. IMGT® AND THE BIRTH OF IMMUNOINFORMATICS;504
33.2;2. FUNDAMENTAL INFORMATION FROM IMGT-ONTOLOGY CONCEPTS;505
33.3;3. IMGT® IMMUNOGLOBULIN REPERTOIRE ANALYSIS;513
33.4;4. IMGT® ANTIBODY ENGINEERING AND HUMANIZATION;524
33.5;5. CONCLUSION;533
33.6;6. AVAILABILITY AND CITATION;534
33.7;ACKNOWLEDGMENT;534
33.8;REFERENCES;534
34;Chapter 27 - Anti-Interleukin-6 Receptor Antibody Therapy Against Autoimmune Inflammatory Diseases;538
34.1;1. INTERLEUKIN-6 AND ITS RECEPTOR SYSTEM;538
34.2;2. PLEIOTROPIC ACTIVITY OF IL-6;539
34.3;3. REGULATION OF IL-6 SYNTHESIS;541
34.4;4. DYSREGULATED PERSISTENT IL-6 SYNTHESIS HAS A PATHOLOGIC ROLE IN THE DEVELOPMENT OF VARIOUS DISEASES;542
34.5;5. A HUMANIZED ANTI-IL-6 RECEPTOR ANTIBODY FOR TREATMENT OF AUTOIMMUNE INFLAMMATORY DISEASES;543
34.6;6. INTERLEUKIN-6 BLOCKADE AFFECTS B- AND T-CELL FUNCTION IN VIVO; LESSONS FROM TOCILIZUMAB TREATMENT;544
34.7;7. CONCLUDING REMARKS;544
34.8;8. CONFLICT OF INTEREST;545
34.9;REFERENCES;545
35;Chapter 28 - Targeting the IL-17/IL-23 Axis in Chronic Inflammatory Immune-Mediated Diseases;550
35.1;1. INTRODUCTION;550
35.2;2. THE IL-17 FAMILY;550
35.3;3. IL-17 RECEPTOR/PATHWAY;551
35.4;4. TH17 CELL DIFFERENTIATION;552
35.5;5. CELLULAR SOURCES AND TARGETS;552
35.6;Anchor 224;553
35.7;6. THE ROLE OF THE IL-17/23 AXIS IN IMMUNE-MEDIATED INFLAMMATORY DISEASES;553
35.8;7. CROHN S DISEASE;554
35.9;8. PSORIASIS;555
35.10;9. PSORIATIC ARTHRITIS;557
35.11;10. ANKYLOSING SPONDYLITIS;558
35.12;11. SUMMARY;559
35.13;REFERENCES;560
36;Chapter 29 - Discovery and Development of Anti-TNF Therapy: Pillar of a Therapeutic Revolution;564
36.1;1. INTRODUCTION;564
36.2;2. HOW WAS TNF DEFINED AS A THERAPEUTIC TARGET?;564
36.3;3. ESTABLISHING THE CLINICAL UTILITY OF ANTI-TNF THERAPY;566
36.4;4. PROOF OF EFFICACY;567
36.5;5. OPTIMIZING LONG-TERM USE;567
36.6;6. PHASE III CLINICAL TRIALS;567
36.7;7. CONCLUSIONS;567
36.8;ACKNOWLEDGMENTS;568
36.9;REFERENCES;568
37;Index;572
37.1;B;573
37.2;C;575
37.3;D;577
37.4;E;577
37.5;F;577
37.6;G;578
37.7;H;578
37.8;I;579
37.9;J;581
37.10;K;581
37.11;L;581
37.12;M;581
37.13;N;582
37.14;O;583
37.15;P;583
37.16;R;584
37.17;S;584
37.18;T;585
37.19;U;585
37.20;V;585
37.21;W;586
37.22;X;586
37.23;Y;586
37.24;Z;586
mehr
Leseprobe
Contributors

Frederick W. Alt

Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children s Hospital, Boston, MA, USA

Department of Genetics, Harvard Medical School, Boston, MA, USA

Radbruch Andreas,     German Rheumatism Research Center Berlin, a Leibniz Institute, Berlin, Germany

Nasim A. Begum,     Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan

Michael C. Carroll,     Program in Cell and Molecular Medicine, Boston Childrens Hospital, Harvard Medical School, Boston, Massachusetts, USA

Andrea Cerutti

Institut Hospital del Mar d Investigacions Mèdiques, Barcelona, Spain

Immunology Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Richard Chahwan,     Department of Biosciences, University of Exeter, Exeter, UK

Tsutomu Chiba,     Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Max D. Cooper,     Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

Riccardo Dalla-Favera

Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA

Department of Pathology and Cell Biology, Columbia University, New York, NY, USA

Department of Genetics and Development, Columbia University, New York, NY, USA

Department of Microbiology and Immunology, Columbia University, New York, NY, USA

Van Duc Dang,     Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany

Sabyasachi Das,     Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

Betty Diamond,     Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA

Anne Durandy

National Institute of Health and Medical Research INSERM U768, Necker Children s Hospital, Paris, France

Descartes-Sorbonne Paris Cité University of Paris, Imagine Institute, France

Department of Immunology and Hematology, Assistance Publique-Hopitaux de Paris, Necker Children s Hospital, Paris, France

Sidonia Fagarasan,     Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama, Tsurumi, Yokohama, Japan

Ann J. Feeney,     Department of Immunology and Microbial Science, The Scripps Research Institute, CA, USA

Marc Feldmann,     Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, UK

Simon Fillatreau,     Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany

Alain Fischer

National Institute of Health and Medical Research INSERM U768, Necker Children s Hospital, Paris, France

Descartes-Sorbonne Paris Cité University of Paris, Imagine Institute, France

Department of Immunology and Hematology, Assistance Publique-Hopitaux de Paris, Necker Children s Hospital, Paris, France

Jennifer L. Gommerman,     Department of Immunology, University of Toronto, Toronto, ON, Canada

Carl S. Goodyear,     Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK

James Hagman,     National Jewish Health, Denver, CO, USA

Richard R. Hardy,     Fox Chase Cancer Center, Philadelphia, PA, USA

Anja E. Hauser

Immune Dynamics, Deutsches Rheumaforschungszentrum, Berlin, Germany

Charité Universitätsmedizin, Berlin, Germany

Kyoko Hayakawa,     Fox Chase Cancer Center, Philadelphia, PA, USA

Barton F. Haynes,     Departments of Medicine and Immunology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA

Brantley R. Herrin,     Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

Falk Hiepe,     Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany

Masaki Hikida,     Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Ellen Hilgenberg,     Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany

Masayuki Hirano,     Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

Tasuku Honjo,     Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan

Uta E. Höpken,     Department of Tumor- and, Immunogenetics, Max-Delbrück Center for Molecular Medicine, Berlin, Germany

Ellen Hsu,     Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA

Hassan Jumaa

Institute of Immunology, University Clinics Ulm, Ulm, Germany

Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany

Centre for Biological Signaling Studies BIOSS, Albert-Ludwigs University of Freiburg, Freiburg, Germany

John F. Kearney,     Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA

Garnett Kelsoe,     Department of Immunology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA

Tadamitsu Kishimoto,     Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan

Maki Kobayashi,     Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan

Sven Kracker

National Institute of Health and Medical Research INSERM U768, Necker Children s Hospital, Paris, France

Descartes-Sorbonne Paris Cité University of Paris, Imagine Institute, France

Tomohiro Kurosaki

Laboratory for Lymphocyte Differentiation, Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama, Japan

Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan

Marie-Paule Lefranc,     IMGT®, The International ImMunoGeneTics Information System®, Université Montpellier 2, CNRS, Institut de Génétique Humaine, Montpellier, France

Susanna M. Lewis,     Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Jianxu Li,     Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA

Andreia C. Lino,     Deutsches Rheuma-Forschungszentrum, Leibniz Institute, Berlin, Germany

Alicia J. Little,     Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA

Joseph S. Lucas,     Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, CA, USA

Fabienne Mackay,     Department of Immunology, Monash University, Clayton, VIC, Australia

Giuliana Magri,     Institut Hospital del Mar d Investigacions Mèdiques, Barcelona, Spain

Alberto Martin,     Department of Immunology, University of Toronto, Toronto, ON, Canada

Hiroyuki Marusawa,     Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

John R. Mascola,     Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Adam Matthews

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA

Department of Genetics, Harvard Medical School, Boston, MA, USA

Department...
mehr

Autor