Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Magnetosphere-Ionosphere Coupling in the Solar System

E-BookPDF0 - No protectionE-Book
Englisch
John Wiley & Sonserschienen am23.09.20161. Auflage
Over a half century of exploration of the Earth's space environment, it has become evident that the interaction between the ionosphere and the magnetosphere plays a dominant role in the evolution and dynamics of magnetospheric plasmas and fields, Interestingly, it was recently discovered that this same interaction is of fundamental importance at other planets and moons throughout the solar system, Based on papers presented at an interdisciplinary AGU Chapman Conference at Yosemite National Park in February 2014, this volume provides an intellectual and visual journey through our exploration and discovery of the paradigm-changing role that the ionosphere plays in determining the filling and dynamics of Earth and planetary environments, The 2014 Chapman conference marks the 40th anniversary of the initial magnetosphere-ionosphere coupling conference at Yosemite in 1974, and thus gives a four decade perspective of the progress of space science research in understanding these fundamental coupling processes, Digital video links to an online archive containing both the 1974 and 2014 meetings are presented throughout this volume for use as an historical resource by the international heliophysics and planetary science communities,

Topics covered in this volume include:
Ionosphere as a source of magnetospheric plasma
Effects of the low energy ionospheric plasma on the stability and creation of the more energetic plasmas
The unified global modeling of the ionosphere and magnetosphere at the Earth and other planets
New knowledge of these coupled interactions for heliophysicists and planetary scientists, with a cross-disciplinary approach involving advanced measurement and modeling techniques

Magnetosphere-Ionosphere Coupling in the Solar System is a valuable resource for researchers in the fields of space and planetary science, atmospheric science, space physics, astronomy, and geophysics,
Read an interview with the editors to find out more:
https://eos,org/editors-vox/filling-earths-space-environment-from-the-sun-or-the-earth



Dr, Chappell has been involved in space science research related to the Earth's magnetosphere and ionosphere for almost 50 years, His career has included research at Lockheed Palo Alto Research Laboratory, NASA/Marshall Space Flight Center and Vanderbilt University, He has worked on particle data from satellite missions for his entire career and has been a Principal Investigator for instruments on two NASA spacecraft, He is the author of more than 125 published articles and has planned AGU conferences and sessions in his area of research, He has edited a conference proceeding and has written articles for encyclopedias, He has co-authored a book, 'Worlds Apart' which examines the subject of science and the media, He has represented NASA in the media and has given hundred's of talks to public audiences,
mehr
Verfügbare Formate
BuchGebunden
EUR219,50
E-BookPDF0 - No protectionE-Book
EUR176,99

Produkt

KlappentextOver a half century of exploration of the Earth's space environment, it has become evident that the interaction between the ionosphere and the magnetosphere plays a dominant role in the evolution and dynamics of magnetospheric plasmas and fields, Interestingly, it was recently discovered that this same interaction is of fundamental importance at other planets and moons throughout the solar system, Based on papers presented at an interdisciplinary AGU Chapman Conference at Yosemite National Park in February 2014, this volume provides an intellectual and visual journey through our exploration and discovery of the paradigm-changing role that the ionosphere plays in determining the filling and dynamics of Earth and planetary environments, The 2014 Chapman conference marks the 40th anniversary of the initial magnetosphere-ionosphere coupling conference at Yosemite in 1974, and thus gives a four decade perspective of the progress of space science research in understanding these fundamental coupling processes, Digital video links to an online archive containing both the 1974 and 2014 meetings are presented throughout this volume for use as an historical resource by the international heliophysics and planetary science communities,

Topics covered in this volume include:
Ionosphere as a source of magnetospheric plasma
Effects of the low energy ionospheric plasma on the stability and creation of the more energetic plasmas
The unified global modeling of the ionosphere and magnetosphere at the Earth and other planets
New knowledge of these coupled interactions for heliophysicists and planetary scientists, with a cross-disciplinary approach involving advanced measurement and modeling techniques

Magnetosphere-Ionosphere Coupling in the Solar System is a valuable resource for researchers in the fields of space and planetary science, atmospheric science, space physics, astronomy, and geophysics,
Read an interview with the editors to find out more:
https://eos,org/editors-vox/filling-earths-space-environment-from-the-sun-or-the-earth



Dr, Chappell has been involved in space science research related to the Earth's magnetosphere and ionosphere for almost 50 years, His career has included research at Lockheed Palo Alto Research Laboratory, NASA/Marshall Space Flight Center and Vanderbilt University, He has worked on particle data from satellite missions for his entire career and has been a Principal Investigator for instruments on two NASA spacecraft, He is the author of more than 125 published articles and has planned AGU conferences and sessions in his area of research, He has edited a conference proceeding and has written articles for encyclopedias, He has co-authored a book, 'Worlds Apart' which examines the subject of science and the media, He has represented NASA in the media and has given hundred's of talks to public audiences,
Details
Weitere ISBN/GTIN9781119066873
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis0 - No protection
FormatFormat mit automatischem Seitenumbruch (reflowable)
Erscheinungsjahr2016
Erscheinungsdatum23.09.2016
Auflage1. Auflage
SpracheEnglisch
Artikel-Nr.3272828
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Title Page;5
2;Copyright Page;6
3;Contents;7
4;Contributors;11
5;Prologue;19
6;Acknowledgments;23
7;Part I Introduction;25
7.1;Chapter 1 Magnetosphere-Ionosphere Coupling, Past to Future;27
7.1.1;1.1. Introduction;27
7.1.2;1.2. Stable Auroral Red Arcs;28
7.1.3;1.3. Plasmasphere Drainage Plumes;29
7.1.4;1.4. Ring Current Decay;31
7.1.5;1.5. Inverted Vs and Dispersive Alfvén Waves;33
7.1.6;1.6. Ion Outflow;35
7.1.7;1.7. Auroral Kilometric Radiation;36
7.1.8;1.8. Saturn Magnetospheric Periodicity;36
7.1.9;1.9. Future Capabilities: Modeling and New Missions;37
7.1.10;1.10. Conclusions;39
7.1.11;References;39
8;Part II The Earth s Ionosphere as a Source;43
8.1;Chapter 2 Measurements of Ion Outflows from the Earth s Ionosphere;45
8.1.1;2.1. Introduction;45
8.1.2;2.2. Thermal Outflows;46
8.1.3;2.3. Suprathermal Outflows;51
8.1.4;2.4. Summary and Discussion;53
8.1.5;Acknowledgments;53
8.1.6;References;54
8.2;Chapter 3 Low-energy Ion Outflow Observed by Cluster: Utilizing the Spacecraft Potential;57
8.2.1;3.1. Introduction;57
8.2.2;3.2. The Cold Ion Detection Challenge;58
8.2.3;3.3. The Cluster Cold Ion Data Set;61
8.2.4;3.4. Results;62
8.2.5;3.5. Summary and Outlook;67
8.2.6;Acknowledgments;69
8.2.7;References;69
8.3;Chapter 4 Advances in Understanding Ionospheric Convection at High Latitudes;73
8.3.1;4.1. Introduction;73
8.3.2;4.2. Observational Capabilities;73
8.3.3;4.3. Observations and Interpretation;76
8.3.4;4.4. Spatial and Temporal Variations in Convection;77
8.3.5;4.5. Effects in the Ionosphere and Thermosphere;80
8.3.6;4.6. Summary;81
8.3.7;Acknowledgments;81
8.3.8;References;81
8.4;Chapter 5 Energetic and Dynamic Coupling of the Magnetosphere-Ionosphere-Thermosphere System;85
8.4.1;5.1. Introduction;85
8.4.2;5.2. Data and Model Description;86
8.4.3;5.3. Results;88
8.4.4;5.4. Summary and Conclusions;98
8.4.5;Acknowledgments;99
8.4.6;References;99
8.5;Chapter 6 The Impact of O+ on Magnetotail Dynamics;103
8.5.1;6.1. Introduction;103
8.5.2;6.2. Does O+ Affect the Triggering of Reconnection;104
8.5.3;6.3. Does O+ Impact the Tail Reconnection Rate?;108
8.5.4;6.4. How Does O+ Influence the Current Sheet and Tail Reconnection Region;109
8.5.5;6.5. Discussion and Summary;110
8.5.6;Acknowledgments;111
8.5.7;References;112
8.6;Chapter 7 Thermal and Low-energy Ion Outflows in and through the Polar Cap: The Polar Wind and the Low-energy Component of the Cleft Ion Fountain;115
8.6.1;7.1. Thermal and Low-energy Ion Outflows in and through the Polar Cap;115
8.6.2;7.2. Ion Outflows in Quiet Time: The Polar Wind;116
8.6.3;7.3. Ion Outflows in Active Time: The Cleft Ion Fountain;121
8.6.4;7.4. Conclusions;122
8.6.5;Acknowledgments;122
8.6.6;References;123
8.7;Chapter 8 Ionospheric and Solar Wind Contributions to Magnetospheric Ion Density and Temperature throughout the Magnetotail;125
8.7.1;8.1. Introduction;125
8.7.2;8.2. Methodology;126
8.7.3;8.3. Results;127
8.7.4;8.4. Discussion;132
8.7.5;8.5. Conclusions;135
8.7.6;Acknowledgments;135
8.7.7;References;136
9;Part III The Effect of Low-energy Plasma on the Stability of Energetic Plasmas;139
9.1;Chapter 9 How Whistler-Mode Waves and Thermal Plasma Density Control the Global Distribution of the Diffuse Aurora and the Dynamical Evolution of Radiation Belt Electrons;141
9.1.1;9.1. Introduction;141
9.1.2;9.2. Origin and Global Distribution of Magnetospheric Whistler-Mode Emissions;142
9.1.3;9.3. Global Distribution of Diffuse Auroral Precipitation;143
9.1.4;9.4. Electron Acceleration by Chorus Emissions;144
9.1.5;9.5. Long-Term Relativistic Electron Decay by Plasmaspheric Hiss and EMIC Waves;145
9.1.6;9.6. Concluding Remarks;146
9.1.7;Acknowledgments;146
9.1.8;References;146
9.2;Chapter 10 Plasma Wave Measurements from the Van Allen Probes;151
9.2.1;10.1. Introduction;151
9.2.2;10.2. Lightning Whistlers;152
9.2.3;10.3. Whistler Mode Chorus;153
9.2.4;10.4. Plasmaspheric Hiss;156
9.2.5;10.5. Magnetosonic Equatorial Noise Emission;157
9.2.6;10.6. Quasi-Periodic Whistler Mode Emission;159
9.2.7;10.7. Conclusion;162
9.2.8;Acknowledgments;162
9.2.9;References;162
9.3;Chapter 11 Ring Current Ions Measured by the RBSPICE Instrument on the Van Allen Probes Mission;169
9.3.1;11.1. Introduction;169
9.3.2;11.2. Instrument;170
9.3.3;11.3. L-Shell versus Time Observations;171
9.3.4;11.4. Spatial Observations;174
9.3.5;11.5. Discussions;176
9.3.6;11.6. Conclusions;176
9.3.7;Acknowledgments;176
9.3.8;References;177
9.4;Chapter 12 Global Modeling of Wave Generation Processes in the Inner Magnetosphere;179
9.4.1;12.1. Introduction;179
9.4.2;12.2. Kinetic Model of the Ring Current;181
9.4.3;12.3. Global Modeling of EMIC Wave Generation;182
9.4.4;12.4. Global Modeling of Whistler Mode Chorus Generation;184
9.4.5;12.5. Conclusions;186
9.4.6;Acknowledgments;187
9.4.7;References;187
10;Part IV Unified Global Modeling of Ionosphere and  Magnetosphere at Earth;191
10.1;Chapter 13 Modeling Magnetosphere-Ionosphere Coupling via Ion Outflow: Past, Present, and Future;193
10.1.1;13.1. Introduction;193
10.1.2;13.2. Classical Polar Wind;194
10.1.3;13.3. Generalized Polar Wind;196
10.1.4;13.4. Future Developments;199
10.1.5;References;200
10.2;Chapter 14 Coupling the Generalized Polar Wind Model to Global Magnetohydrodynamics: Initial Results;203
10.2.1;14.1. Introduction;203
10.2.2;14.2. Methodology;204
10.2.3;14.3. Results;206
10.2.4;14.4. Discussion;212
10.2.5;14.5. Conclusions;215
10.2.6;Acknowledgments;215
10.2.7;References;215
10.3;Chapter 15 Coupling Ionospheric Outflow into Magnetospheric Models: Transverse Heating from Wave-Particle Interactions;219
10.3.1;15.1. Introduction;219
10.3.2;15.2. Including Wave-Particle Interactions When Merging Outflow with a Magnetosphere Model;220
10.3.3;Acknowledgments;225
10.3.4;References;225
10.4;Chapter 16 Modeling of the Evolution of Storm-Enhanced Density Plume during the 24 to 25 October 2011 Geomagnetic Storm;229
10.4.1;16.1. Introduction;229
10.4.2;16.2. Model Description;230
10.4.3;16.3. Model Results;230
10.4.4;16.4. Summary and Conclusions;235
10.4.5;Acknowledgments;236
10.4.6;References;236
10.5;Chapter 17 Forty-Seven Years of the Rice Convection Model;239
10.5.1;17.1. Introduction;239
10.5.2;17.2. Rice Convection Model Logic and Formulation;240
10.5.3;17.3. What the 1974 RCM Got Right and What it Got Wrong;241
10.5.4;17.4. Latent Defect in the 1974 Model and Partial Resolution;245
10.5.5;17.5. Concluding Comments;246
10.5.6;17.6. Supplementary Digital Data;246
10.5.7;Acknowledgments;247
10.5.8;References;247
10.6;Chapter 18 Magnetospheric Model Performance during Conjugate Aurora;251
10.6.1;18.1. Introduction;251
10.6.2;18.2. DATA ANALYSIS;252
10.6.3;18.3. Results;253
10.6.4;18.4. Model Results;255
10.6.5;18.5. Discussion;255
10.6.6;18.6. Summary;256
10.6.7;Acknowledgments;257
10.6.8;References;257
10.7;Chapter 19 Day-to-Day Variability of the Quiet-Time Plasmasphere Caused by Thermosphere Winds;259
10.7.1;19.1. Introduction;259
10.7.2;19.2. SAMI3;260
10.7.3;19.3. SAMI3 Results;260
10.7.4;19.4. Variability in Winds;262
10.7.5;19.5. Conclusions;263
10.7.6;Acknowledgments;264
10.7.7;References;264
11;Part V The Coupling of the Ionosphere and Magnetosphere at Other Planets and Moons in the Solar System;267
11.1;Chapter 20 Magnetosphere-Ionosphere Coupling at Planets and Satellites;269
11.1.1;20.1. Introduction;269
11.1.2;20.2. MHD Processes and MI Coupling Tutorial;271
11.1.3;20.3. M-I Coupling at Jupiter;274
11.1.4;20.4. M-I Coupling at Saturn;275
11.1.5;20.5. M-I Coupling at Titan: An Example of a Non-Magnetic Satellite Interaction;277
11.1.6;20.6. Summary;278
11.1.7;Acknowledgments;278
11.1.8;References;278
11.2;Chapter 21 Plasma Measurements at Non-Magnetic Solar System Bodies;283
11.2.1;21.1. Introduction;283
11.2.2;21.2. Types of Interaction;283
11.2.3;21.3. Objects;285
11.2.4;21.4. Escape: Comparison;295
11.2.5;21.5. Summary and Conclusions;295
11.2.6;Acknowledgments;295
11.2.7;References;295
11.3;Chapter 22 Plasma Wave Observations with Cassini at Saturn;301
11.3.1;22.1. Introduction;301
11.3.2;22.2. Wave Observations at Saturn;302
11.3.3;22.3. Whistler Mode Chorus Emissions;303
11.3.4;22.4. Whistler Mode Auroral Hiss Emission;306
11.3.5;22.5. Electrostatic ECH and UHR Emissions;306
11.3.6;22.6. Narrowband Emission;307
11.3.7;22.7. Upstream Langmuir Waves;307
11.3.8;22.8. Saturn Kilometric Radiation and Periodicities;308
11.3.9;22.9. Conclusion;308
11.3.10;Acknowledgments;309
11.3.11;References;309
11.4;Chapter 23 Titan s Interaction with Saturn s Magnetosphere;315
11.4.1;23.1. Introduction;315
11.4.2;23.2. Observations of the Saturn?Titan Interaction;317
11.4.3;23.3. Magnetospheric Precipitation and Its Effects on Titan s Thermosphere and Ionosphere;320
11.4.4;23.4. Titan s Influence on Saturn s Magnetosphere;324
11.4.5;23.5. Summary and Discussion;325
11.4.6;References;326
12;Part VI The Unified Modeling of the Ionosphere and Magnetosphere at Other Planets and Moons in the Solar System;331
12.1;Chapter 24 Magnetosphere-Ionosphere Coupling at Jupiter and Saturn;333
12.1.1;24.1. Introduction;333
12.1.2;24.2. Ionospheric Signatures of M?I Coupling at Saturn: Birkeland Currents;335
12.1.3;24.3. Magnetospheric Signatures of M-I Coupling at Saturn: Injection-Dispersion Structures;336
12.1.4;24.4. Future Work;339
12.1.5;24.5. Implications for Comparative Magnetospheric Studies;340
12.1.6;Acknowledgments;340
12.1.7;References;341
12.2;Chapter 25 Global MHD Modeling of the Coupled Magnetosphere-Ionosphere System at Saturn;343
12.2.1;25.1. Introduction;343
12.2.2;25.2. Global MHD Model;344
12.2.3;25.3. Simulations of Magnetospheric Periodicities;345
12.2.4;25.4. Simulations of Solar Wind Influences;351
12.2.5;25.5. Summary and Conclusions;354
12.2.6;Acknowledgments;355
12.2.7;References;356
12.3;Chapter 26 Simulation Studies of Magnetosphere and Ionosphere Coupling in Saturn s Magnetosphere;359
12.3.1;26.1. Introduction;359
12.3.2;26.2. The Simulation Model;360
12.3.3;26.3. Saturn s Simulated Magnetosphere;360
12.3.4;26.4. Discussion;366
12.3.5;Acknowledgments;367
12.3.6;References;367
12.4;Chapter 27 Characterizing the Enceladus Torus by Its Contribution to Saturn s Magnetosphere;369
12.4.1;27.1. Introduction;369
12.4.2;27.2. Enceladus and Its Plume in Saturn s Magnetosphere;370
12.4.3;27.3. The Enceladus Wake;374
12.4.4;27.4. Summary;376
12.4.5;References;377
13;Part VII Future Directions for Magnetosphere-Ionosphere Coupling Research;379
13.1;Chapter 28 Future Atmosphere-Ionosphere-Magnetosphere Coupling Study Requirements;381
13.1.1;28.1. Motivations;381
13.1.2;28.2. Outflow Highlights Reconsidered;386
13.1.3;28.3. Science Objectives/Actions;387
13.1.4;28.4. Mission/Measurement Requirements;388
13.1.5;28.5. Summary Discussion;397
13.1.6;28.6. Conclusions;399
13.1.7;Acknowledgments;399
13.1.8;References;399
14;DOI List;401
15;Index;403
16;EULA;417
mehr

Autor