Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Applied Tribology

Bearing Design and Lubrication
Wileyerschienen am01.07.2017
Insightful working knowledge of friction, lubrication, and wear in machines

Applications of tribology are widespread in industries ranging from aerospace, marine and automotive to power, process, petrochemical and construction. With world-renowned expert co-authors from academia and industry, Applied Tribology: Lubrication and Bearing Design, 3rd Edition provides a balance of application and theory with numerous illustrative examples.

The book provides clear and up-to-date presentation of working principles of lubrication, friction and wear in vital mechanical components, such as bearings, seals and gears. The third edition has expanded coverage of friction and wear and contact mechanics with updated topics based on new developments in the field.

Key features:
Includes practical applications, homework problems and state-of-the-art references.
Provides presentation of design procedure.
Supplies clear and up-to-date information based on the authors' widely referenced books and over 500 archival papers in this field.

Applied Tribology: Lubrication and Bearing Design, 3rd Edition provides a valuable and authoritative resource for mechanical engineering professionals working in a wide range of industries with machinery including turbines, compressors, motors, electrical appliances and electronic components. Senior and graduate students in mechanical engineering will also find it a useful text and reference.



Dr. Michael M. Khonsari holds the Dow Chemical Endowed Chair and Professor of Mechanical Engineering at Louisiana State University (LSU), where he directs the Center for Rotating Machinery. Prior to joining LSU, he served as a faculty member at The Ohio State University, University of Pittsburgh, and Southern Illinois University, and was a research Faculty Fellow at NASA Lewis (now Glenn) Research Center, Wright-Patterson Air Force laboratories, and the U.S. Department of Energy. He is holder of several US patents, has authored over 270 archival papers, 50 book chapters and special publications, and three books on tribology, fatigue, and rotor dynamics. Professor Khonsari is the recipient of ASME Mayo Hersey, ASME Burt Newkirk Awards, and serves as the Editor-in-Chief of ASME Journal of Tribology. He is a fellow of the American Society of Mechanical Engineers (ASME), Society of Tribologist and Lubrication Engineers (STLE), and the American Association for the Advancement of Science (AAAS).
Dr. E. Richard Booser has been active in the field of tribology and lubrication for 70 years. He was employed by the General Electric Co. for 39 years in development work on bearings and lubricants for steam and gas turbines, electric motors and generators, aerospace and nuclear plant equipment, and a variety of related electrical products. He was the editor of three volumes of the Tribology Handbook series and a co-author of the 1957 book on Bearing Design and Application. He served as the President of the Society of Tribologists and Lubrication Engineers (STLE) in 1956 and has received the STLE National Award.
mehr
Verfügbare Formate
BuchGebunden
EUR166,50

Produkt

KlappentextInsightful working knowledge of friction, lubrication, and wear in machines

Applications of tribology are widespread in industries ranging from aerospace, marine and automotive to power, process, petrochemical and construction. With world-renowned expert co-authors from academia and industry, Applied Tribology: Lubrication and Bearing Design, 3rd Edition provides a balance of application and theory with numerous illustrative examples.

The book provides clear and up-to-date presentation of working principles of lubrication, friction and wear in vital mechanical components, such as bearings, seals and gears. The third edition has expanded coverage of friction and wear and contact mechanics with updated topics based on new developments in the field.

Key features:
Includes practical applications, homework problems and state-of-the-art references.
Provides presentation of design procedure.
Supplies clear and up-to-date information based on the authors' widely referenced books and over 500 archival papers in this field.

Applied Tribology: Lubrication and Bearing Design, 3rd Edition provides a valuable and authoritative resource for mechanical engineering professionals working in a wide range of industries with machinery including turbines, compressors, motors, electrical appliances and electronic components. Senior and graduate students in mechanical engineering will also find it a useful text and reference.



Dr. Michael M. Khonsari holds the Dow Chemical Endowed Chair and Professor of Mechanical Engineering at Louisiana State University (LSU), where he directs the Center for Rotating Machinery. Prior to joining LSU, he served as a faculty member at The Ohio State University, University of Pittsburgh, and Southern Illinois University, and was a research Faculty Fellow at NASA Lewis (now Glenn) Research Center, Wright-Patterson Air Force laboratories, and the U.S. Department of Energy. He is holder of several US patents, has authored over 270 archival papers, 50 book chapters and special publications, and three books on tribology, fatigue, and rotor dynamics. Professor Khonsari is the recipient of ASME Mayo Hersey, ASME Burt Newkirk Awards, and serves as the Editor-in-Chief of ASME Journal of Tribology. He is a fellow of the American Society of Mechanical Engineers (ASME), Society of Tribologist and Lubrication Engineers (STLE), and the American Association for the Advancement of Science (AAAS).
Dr. E. Richard Booser has been active in the field of tribology and lubrication for 70 years. He was employed by the General Electric Co. for 39 years in development work on bearings and lubricants for steam and gas turbines, electric motors and generators, aerospace and nuclear plant equipment, and a variety of related electrical products. He was the editor of three volumes of the Tribology Handbook series and a co-author of the 1957 book on Bearing Design and Application. He served as the President of the Society of Tribologists and Lubrication Engineers (STLE) in 1956 and has received the STLE National Award.
Details
Weitere ISBN/GTIN9781118700259
ProduktartE-Book
EinbandartE-Book
FormatPDF
Verlag
Erscheinungsjahr2017
Erscheinungsdatum01.07.2017
Seiten672 Seiten
SpracheEnglisch
Dateigrösse27161
Artikel-Nr.3321249
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Applied Tribology;3
2;Contents;9
3;Series Preface;11
4;Preface: Third Edition;13
5;Preface: Second Edition;15
6;About the Companion Website;17
7;Part I General Considerations;19
7.1;1 Tribology - Friction, Wear, and Lubrication;21
7.1.1;1.1 History of Tribology;21
7.1.1.1;Friction;22
7.1.1.2;Wear;22
7.1.1.3;Bearing Materials;22
7.1.1.4;Lubricants;23
7.1.1.5;Fluid-Film Bearings;23
7.1.1.6;Rolling Element Bearings;24
7.1.1.7;Nanotribology and Surface Effects;24
7.1.2;1.2 Tribology Principles;25
7.1.2.1;Dry Sliding;25
7.1.2.2;Fluid-Film Lubrication;26
7.1.2.3;Elastohydrodynamic Lubrication (EHL);28
7.1.2.4;Boundary Lubrication;29
7.1.3;1.3 Principles for Selection of Bearing Types;30
7.1.3.1;Mechanical Requirements;32
7.1.3.2;Environmental Conditions;35
7.1.3.3;Economics;35
7.1.4;1.4 Modernization of Existing Applications;36
7.1.5;1.5 A Look Ahead;37
7.1.5.1;Dry and Semilubricated Bearings;37
7.1.5.2;Ball and Roller Bearings;37
7.1.5.3;Fluid-Film Bearings;38
7.1.6;References;39
7.2;2 Lubricants and Lubrication;41
7.2.1;2.1 Mineral Oils;41
7.2.2;2.2 Synthetic Oils;43
7.2.3;2.3 Viscosity;47
7.2.3.1;Viscosity Classifications;48
7.2.3.2;Viscosity-Temperature Relations;49
7.2.3.3;Viscosity-Pressure Relations;52
7.2.3.4;EHL Pressure-Viscosity Coefficients;54
7.2.4;2.4 Free Volume Viscosity Model;55
7.2.5;2.5 Density and Compressibility;57
7.2.6;2.6 Thermal Properties;58
7.2.7;2.7 Non-Newtonian Lubricants;60
7.2.7.1;Viscoelastic Effect;63
7.2.8;2.8 Oil Life;64
7.2.9;2.9 Greases;66
7.2.9.1;Oils in Greases;67
7.2.9.2;Thickeners;67
7.2.9.3;Mechanical Properties;68
7.2.10;2.10 Solid Lubricants;70
7.2.11;2.11 Lubricant Supply Methods;72
7.2.11.1;Self-Contained Units;72
7.2.11.2;Circulating Oil Systems;73
7.2.11.3;Centralized Lubrication Systems;78
7.2.12;References;79
7.3;3 Surface Texture, Interaction of Surfaces and Wear;83
7.3.1;3.1 Geometric Characterization of Surfaces;83
7.3.2;3.2 Surface Parameters;85
7.3.2.1;Amplitude Parameters;85
7.3.2.2;Spacing and Shape Parameters;87
7.3.2.3;Hybrid Parameters;89
7.3.3;3.3 Measurement of Surface Texture;90
7.3.3.1;Contacting Methods;90
7.3.3.2;Noncontacting Methods;93
7.3.4;3.4 Measurement of Surface Flatness;93
7.3.5;3.5 Statistical Descriptions;95
7.3.6;3.6 Surface Texture Symbols;96
7.3.7;3.7 Contact Between Surfaces;97
7.3.7.1;Micro-Contact Considerations: Deformation of Single Asperity;98
7.3.7.2;Contact of a Rough Flat Surface and a Smooth Flat Surface (Greenwood and Williamson-Based Models);102
7.3.7.3;Contact of Two Rough Surfaces;105
7.3.7.4;Relationship Between Surface Features and GW Parameters;106
7.3.7.5;The Asperity Plasticity Index;106
7.3.7.6;Contact of Curved Surfaces;108
7.3.8;3.8 Temperature Rise in Sliding Surfaces;111
7.3.9;3.9 Lubrication Regime Relation to Surface Roughness;114
7.3.10;3.10 Friction;116
7.3.11;3.11 Wear;118
7.3.11.1;Adhesive Wear;118
7.3.11.2;Prediction of Adhesive Wear;118
7.3.11.3;Derivation and Interpretation of Archards Adhesive Wear Equation;122
7.3.11.4;Physical Meaning of the Wear Coefficient in Adhesive Wear;126
7.3.11.5;The Fatigue Theory of Adhesive Wear;127
7.3.11.6;Interpretation of Wear Coefficient by Fatigue Analysis;128
7.3.11.7;The Delamination Theory of Wear;129
7.3.11.8;Interpretation of the Wear Coefficient by the Delamination Theory;131
7.3.11.9;Abrasive Wear;132
7.3.11.10;Abrasive Wear Rate and Abrasive Wear Coefficient;133
7.3.11.11;Corrosive Wear;135
7.3.11.12;Surface Fatigue, Brittle Fracture, Impact, Erosion;135
7.3.11.13;Thermodynamics of Wear;137
7.3.11.14;Classification of Wear, Failure, and Wear Maps;141
7.3.11.15;Dry Bearing Wear Life;142
7.3.11.16;Lubricated Wear;143
7.3.11.17;General Progression of Wear;143
7.3.11.18;Effect of Load and Speed in Bearings;144
7.3.11.19;Means of Wear Reduction;145
7.3.12;References;146
7.4;4 Bearing Materials;153
7.4.1;4.1 Distinctive Material Selection Factors;153
7.4.1.1;Compatibility;154
7.4.1.2;Embedability and Conformability;154
7.4.1.3;Strength;156
7.4.1.4;Corrosion Resistance;156
7.4.1.5;Thermal Properties;156
7.4.2;4.2 Oil-Film Bearing Materials;157
7.4.2.1;Babbitts;157
7.4.2.2;Copper Alloys;159
7.4.2.3;Aluminum;160
7.4.2.4;Cast Iron and Steel;161
7.4.2.5;Silver;161
7.4.2.6;Zinc;161
7.4.3;4.3 Dry and Semilubricated Bearing Materials;162
7.4.3.1;Plastics;162
7.4.3.2;Carbon-Graphite;163
7.4.3.3;Rubber;163
7.4.3.4;Wood;163
7.4.4;4.4 Air Bearing Materials;163
7.4.4.1;Foil Air Bearings;164
7.4.4.2;Air Lifts;166
7.4.4.3;Computer Hard Disk Drives;166
7.4.5;4.5 High-Temperature Materials;167
7.4.6;4.6 Rolling Bearing Materials;170
7.4.6.1;Polycrystalline Diamond (PCD);171
7.4.7;References;173
8;Part II Fluid-Film Bearings;177
8.1;5 Fundamentals of Viscous Flow;179
8.1.1;5.1 General Conservation Laws;179
8.1.2;5.2 Conservation of Mass;180
8.1.2.1;Cartesian Coordinates;180
8.1.2.2;Cylindrical Coordinates;180
8.1.3;5.3 Conservation of Momentum;181
8.1.3.1;Newtonian Fluids;183
8.1.4;5.4 Conservation of Energy;185
8.1.5;5.5 Petroff s Formula;191
8.1.6;5.6 Viscometers;193
8.1.6.1;Capillary Tube Viscometer;193
8.1.6.2;Rotational Viscometers;194
8.1.7;5.7 Nondimensionalization of Flow Equations;197
8.1.8;5.8 Nondimensionalization of the Energy Equation;198
8.1.9;5.9 Order-of-Magnitude Analysis;200
8.1.9.1;Comparison of Inertia Terms and Viscous Terms;200
8.1.9.2;Contribution of Gravity;201
8.1.9.3;Contribution of the Pressure Term;202
8.1.9.4;Comparison of Pressure and Viscous Forces;202
8.1.10;References;206
8.2;6 Reynolds Equation and Applications;207
8.2.1;6.1 Assumptions and Derivations;207
8.2.1.1;Navier-Stokes Equations;208
8.2.1.2;Boundary Conditions;209
8.2.1.3;Conservation of Mass;209
8.2.1.4;General Reynolds Equation;213
8.2.1.5;Standard Reynolds Equation;214
8.2.1.6;Cylindrical Coordinates;215
8.2.2;6.2 Turbulent Flows;215
8.2.3;6.3 Surface Roughness;217
8.2.4;6.4 Nondimensionalization;219
8.2.5;6.5 Performance Parameters;220
8.2.6;6.6 Limiting Cases and Closed-Form Solutions;221
8.2.6.1;A Simplified Form of Reynolds Equation for Steady Film;224
8.2.7;6.7 Application: Rayleigh Step Bearing;224
8.2.7.1;Optimization of Load-Carrying Capacity;225
8.2.7.2;Optimization of Load-Carrying Capacity;227
8.2.8;6.8 Numerical Method;229
8.2.9;References;236
8.3;7 Thrust Bearings;239
8.3.1;7.1 Thrust Bearing Types;239
8.3.2;7.2 Design Factors;242
8.3.3;7.3 Performance Analysis;243
8.3.4;7.4 Tapered-Land Thrust Bearings;244
8.3.4.1;Temperature Rise;247
8.3.5;7.5 Pivoted-Pad Thrust Bearings;250
8.3.6;7.6 Step Thrust Bearings;254
8.3.7;7.7 Spring-Mounted Thrust Bearings;255
8.3.8;7.8 Flat-Land Thrust Bearings;256
8.3.9;7.9 Maximum Bearing Temperature Based on Thermohydrodynamic Analysis;258
8.3.10;7.10 Parasitic Power Losses;264
8.3.10.1;1. Through-Flow Loss;264
8.3.10.2;2. Surface Drag Losses;265
8.3.10.3;Possible Methods for Reducing Parasitic Losses;266
8.3.11;7.11 Turbulence;267
8.3.12;References;270
8.4;8 Journal Bearings;273
8.4.1;8.1 Introduction;273
8.4.1.1;Film Thickness Profile;274
8.4.2;8.2 Full-Arc Plain Journal Bearing with Infinitely Long Approximation (ILA);278
8.4.3;8.3 Boundary Conditions;279
8.4.4;8.4 Full-Sommerfeld Boundary Condition;280
8.4.4.1;Load-Carrying Capacity Based on Full-Sommerfeld Condition;281
8.4.5;8.5 Definition of the Sommerfeld Number;282
8.4.6;8.6 Half-Sommerfeld Boundary Condition;283
8.4.7;8.7 Cavitation Phenomena;287
8.4.7.1;Gaseous Cavitation;287
8.4.7.2;Vapor Cavitation;287
8.4.8;8.8 Swift-Stieber (Reynolds) Boundary Condition;288
8.4.9;8.9 Infinitely Short Journal Bearing Approximation (ISA);291
8.4.10;8.10 Full- and Half-Sommerfeld Solutions for Short Bearings (ISA);293
8.4.11;8.11 Bearing Performance Parameters;294
8.4.11.1;Leakage Flow Rate and Friction Coefficient;294
8.4.12;8.12 Finite Journal Bearing Design and Analysis;295
8.4.12.1;Tabulated Dimensionless Performance Parameters;297
8.4.13;8.13 Attitude Angle for Other Bearing Configurations;304
8.4.14;8.14 Lubricant Supply Arrangement;305
8.4.14.1;Supply Hole;305
8.4.14.2;Axial Groove;305
8.4.14.3;Circumferential Groove;307
8.4.14.4;Spiral Grooves;307
8.4.15;8.15 Flow Considerations;307
8.4.15.1;Holes or Axial Grooves;307
8.4.15.2;Axial Flow Due to Rotation;307
8.4.15.3;Pressure-Induced Flow;309
8.4.15.4;Total Leakage Flow Rate;310
8.4.15.5;Circumferential Groove;316
8.4.16;8.16 Bearing Stiffness, Rotor Vibration, and Oil-Whirl Instability;318
8.4.17;8.17 Tilting Pad Journal Bearings;322
8.4.18;8.18 General Design Guides;324
8.4.18.1;Effective Temperature;324
8.4.18.2;Maximum Bearing Temperature;325
8.4.18.3;Maximum Bearing Temperature and Effective Temperature Base on Thermohydrodynamic Analysis;326
8.4.18.4;Supply Temperature and Bearing Whirl Instability;329
8.4.18.5;Turbulent and Parasitic Loss Effects;330
8.4.18.6;Flooded versus Starved Condition;330
8.4.18.7;Bearing Load and Dimensions;331
8.4.18.8;Lift-Off Speed;331
8.4.18.9;Eccentricity and Minimum Film Thickness;332
8.4.18.10;Operating Clearance;333
8.4.18.11;Thermally Induced Seizure;334
8.4.18.12;Misalignment and Shaft Deflection;338
8.4.19;References;342
8.5;9 Squeeze-Film Bearings;347
8.5.1;9.1 Introduction;347
8.5.2;9.2 Governing Equations;348
8.5.3;9.3 Planar Squeeze Film;349
8.5.3.1;Two Parallel Circular Disks;350
8.5.3.2;Shape Variation: Elliptical Disks;351
8.5.4;9.4 Generalization for Planar Squeeze Film;352
8.5.5;9.5 Nonplanar Squeeze Film;355
8.5.5.1;Sphere Approaching a Plate;355
8.5.5.2;Expressions for Several Nonplanar Squeeze-Film Geometries;356
8.5.6;9.6 Squeeze Film of Finite Surfaces;361
8.5.6.1;Finite Planar Squeeze Film;361
8.5.6.2;Squeeze Film of Finite Nonplanar Bodies;366
8.5.6.3;Combined Squeeze and Rotational Motion;371
8.5.7;9.7 Piston Rings;378
8.5.7.1;Friction Force and Power Loss;384
8.5.8;References;388
8.6;10 Hydrostatic Bearings;391
8.6.1;10.1 Introduction;391
8.6.1.1;Heavily Loaded Precision Machinery;391
8.6.1.2;Hydrostatic Oil Lifts;392
8.6.1.3;Severe Operating Conditions;392
8.6.1.4;Stadium Mover/Converter;393
8.6.2;10.2 Types and Configurations;393
8.6.3;10.3 Circular Step Thrust Bearings;394
8.6.3.1;Pressure Distribution and Load;394
8.6.3.2;Load-Carrying Capacity;396
8.6.3.3;Flow Rate Requirement;396
8.6.3.4;Bearing Stiffness;397
8.6.3.5;Friction Torque;397
8.6.3.6;System Power Loss;397
8.6.3.7;Film Power Loss;397
8.6.3.8;Pumping Power Loss;398
8.6.3.9;Optimization;398
8.6.3.10;Thermal Effects and Typical Operating Conditions;398
8.6.4;10.4 Capillary-Compensated Hydrostatic Bearings;400
8.6.4.1;Governing Equations;401
8.6.4.2;Stiffness and Optimization;401
8.6.5;10.5 Orifice-Compensated Bearings;402
8.6.5.1;Stiffness and Optimization;403
8.6.6;10.6 Design Procedure for Compensated Bearings;404
8.6.7;10.7 Generalization to Other Configurations;405
8.6.7.1;Pressure Factor;405
8.6.7.2;Flow Factor;405
8.6.7.3;Power Loss Factor, Hf;407
8.6.8;10.8 Hydraulic Lift;408
8.6.9;References;411
8.7;11 Gas Bearings;413
8.7.1;11.1 Equation of State and Viscous Properties;413
8.7.1.1;Equation of State;413
8.7.1.2;Viscous Properties;414
8.7.2;11.2 Reynolds Equation;414
8.7.2.1;Restrictions and Limitation;417
8.7.2.2;Limiting Cases;419
8.7.3;11.3 Closed-Form Solutions;421
8.7.3.1;Infinitely Long Tapered-Step and Slider Bearings;421
8.7.3.2;Infinitely Long Journal Bearings;421
8.7.4;11.4 Finite Thrust Bearings;422
8.7.4.1;Rectangular Thrust Bearings;422
8.7.4.2;Sector-Pad Thrust Bearings;422
8.7.4.3;Design Procedure for Tilting-Pad Thrust Bearings;425
8.7.5;11.5 Finite Journal Bearings;431
8.7.5.1;Steady-State Performance;431
8.7.5.2;Angular Stiffness and Misalignment Torque;434
8.7.5.3;Whirl Instability;435
8.7.6;11.6 Tilting-Pad Journal Bearings;436
8.7.6.1;Steady-State Performance;436
8.7.7;11.7 Foil Gas Bearings;441
8.7.7.1;Coupling between Hydrodynamics and Structure;442
8.7.7.2;Analysis;443
8.7.7.3;Limiting Speed Analysis;445
8.7.8;References;448
8.8;12 Dry and Starved Bearings;451
8.8.1;12.1 Dry and Semilubricated Bearings;451
8.8.1.1;Plastics;451
8.8.1.2;Porous Metal Bearings;454
8.8.2;12.2 Partially Starved Oil-Film Bearings;457
8.8.2.1;Oil-Ring Bearings;458
8.8.2.2;Ring Speed and Oil Delivery;460
8.8.2.3;Disk-Oiled Bearings;463
8.8.3;12.3 Partially Starved Bearing Analysis;464
8.8.4;12.4 Minimum Oil Supply;468
8.8.4.1;Drop-Feed Oiling;469
8.8.4.2;Wick Oiling;469
8.8.4.3;Mist and Air-Oil Feed;471
8.8.4.4;Grease Lubrication;473
8.8.5;12.5 Temperature of Starved Bearings;474
8.8.6;References;476
9;Part III Rolling Element Bearings;479
9.1;13 Selecting Bearing Type and Size;481
9.1.1;13.1 Ball Bearing Types;481
9.1.2;13.2 Roller Bearing Types;485
9.1.3;13.3 Thrust Bearing Types;486
9.1.4;13.4 Nomenclature;487
9.1.4.1;Bearing Type Code;488
9.1.4.2;Bearing Bore Code;488
9.1.4.3;Bearing Cross Section Code;488
9.1.4.4;Extensions of the Dimensional Plan;489
9.1.5;13.5 Boundary Dimensions;490
9.1.6;13.6 Chamfer Dimensions;490
9.1.6.1;Internal Clearance;492
9.1.6.2;Precision Classifications;494
9.1.7;13.7 Shaft and Housing Fits;495
9.1.7.1;Rotating Inner Ring with a Stationary Load;495
9.1.7.2;Stationary Inner Ring with a Rotating Load;495
9.1.7.3;Indeterminate or Variable Load Direction;496
9.1.7.4;Mounting Tolerances;496
9.1.8;13.8 Load-Life Relations;496
9.1.8.1;Combined Radial and Thrust Load;499
9.1.8.2;Varying Load;502
9.1.8.3;Minimum Load and Preloading;503
9.1.9;13.9 Adjusted Rating Life;504
9.1.9.1;Life Reduction Due to Particle Contamination;508
9.1.10;13.10 Static Load Capacity;509
9.1.11;References;511
9.2;14 Principles and Operating Limits;513
9.2.1;14.1 Internal Geometry;513
9.2.1.1;Point and Line Contact;514
9.2.1.2;Curvature and Ball Contact Geometry;514
9.2.1.3;Radial (Diametral) Internal Clearance;516
9.2.1.4;Axial Clearance;517
9.2.1.5;Angular Misalignment;517
9.2.2;14.2 Surface Stresses and Deformations;518
9.2.2.1;Ball-Raceway Contacts;518
9.2.2.2;Roller-Raceway Line Contacts;522
9.2.3;14.3 Subsurface Stresses;524
9.2.4;14.4 Load Distribution on Rolling Elements;526
9.2.4.1;Radially Loaded Bearings;526
9.2.4.2;Thrust Loaded Bearings;528
9.2.4.3;Combined Radial and Thrust Loads;528
9.2.5;14.5 Speed of Cage and Rolling Elements;531
9.2.6;14.6 Cage Considerations;532
9.2.7;14.7 Vibration;534
9.2.7.1;Bearing Frequencies;535
9.2.8;14.8 Bearing Elasticity;536
9.2.9;14.9 Noise;538
9.2.9.1;Cage Noise;538
9.2.10;14.10 Speed Limit;540
9.2.10.1;Low and Ultra-low Speeds;542
9.2.11;14.11 Load Limit;542
9.2.12;14.12 Temperature Limit;543
9.2.13;14.13 Misalignment Limit;544
9.2.14;References;545
9.3;15 Friction and Elastohydrodynamic Lubrication;547
9.3.1;15.1 Friction;547
9.3.2;15.2 Friction Moments;549
9.3.3;15.3 Wear;553
9.3.4;15.4 Bearing Operating Temperature;555
9.3.5;15.5 Rolling Bearing Lubrication;557
9.3.6;15.6 Elastohydrodynamic Lubrication (EHL) of Rolling Contacts;558
9.3.6.1;Line Contact;558
9.3.6.2;Point Contact;559
9.3.6.3;Lubrication Regimes;562
9.3.6.4;Mixed-Film Lubrication;562
9.3.6.5;Lubricant Starvation;564
9.3.7;15.7 Selection of Oil Viscosity;568
9.3.8;15.8 Oil Application;571
9.3.9;15.9 Oil Change Intervals;572
9.3.10;15.10 Grease Selection and Application;573
9.3.10.1;Grease Composition;573
9.3.11;15.11 Grease Life: Temperature and Speed Relations;574
9.3.12;15.12 Greasing and Regreasing;577
9.3.13;15.13 Solid Lubricants;579
9.3.14;References;582
10;Part IV Seals and Monitoring;589
10.1;16 Seals Fundamentals;591
10.1.1;Classification of Seals;591
10.1.2;16.1 Clearance Seals;593
10.1.2.1;Bushing Shaft Seals;593
10.1.2.2;Floating Bushing Seals;593
10.1.2.3;Labyrinth Shaft Seals;596
10.1.2.4;Brush Seals;597
10.1.2.5;Ferrofluid Seals;598
10.1.3;16.2 Visco Seals;599
10.1.3.1;Analysis of Flow in a Visco Seal: Laminar and Turbulent;599
10.1.3.2;Gas Ingestion;603
10.1.3.3;High Pressure Gas Sealing Using Double Screw Pump with a Buffer Fluid;605
10.1.4;16.3 Radial Contact Seals;607
10.1.4.1;Lip Seals;607
10.1.4.2;Packing Seals;608
10.1.5;16.4 Mechanical Face Seals;610
10.1.5.1;Elementary Considerations and Terminology;610
10.1.5.2;Balanced vs Unbalanced Seal;613
10.1.5.3;Hydrodynamic Pressure and Balance Ratio;614
10.1.5.4;Pressure-Velocity, Heat Generation, and Power Loss;616
10.1.5.5;Method for Reducing Surface Temperature;617
10.1.5.6;Seal Materials and Coefficient of Friction;618
10.1.5.7;Seal Flushing Systems;618
10.1.5.8;Seal Face Temperature;621
10.1.6;References;633
10.2;17 Condition Monitoring and Failure Analysis;637
10.2.1;17.1 Installation Analysis;637
10.2.2;17.2 On-Line Monitoring;638
10.2.2.1;Temperature;638
10.2.2.2;Vibration;639
10.2.3;17.3 Oil Analysis;641
10.2.4;17.4 Wear Monitoring;643
10.2.5;17.5 Ball and Roller Bearing Failure Analysis;645
10.2.6;17.6 Oil-Film Bearing Failure Analysis;648
10.2.6.1;Fatigue;650
10.2.6.2;Wear;650
10.2.6.3;Corrosion;653
10.2.6.4;Erosion;654
10.2.6.5;Electrical Damage;654
10.2.7;References;655
11;Appendix A Unit Conversion Factors;657
12;Appendix B Viscosity Conversions;659
13;Index;661
14;EULA;672
mehr