Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
864 Seiten
Englisch
John Wiley & Sonserschienen am11.11.20205. Auflage
A definitive guide to the depth and breadth of the ecological sciences, revised and updated

The revised and updated fifth edition of Ecology: From Individuals to Ecosystems - now in full colour - offers students and practitioners a review of the ecological sciences. 

The previous editions of this book earned the authors the prestigious 'Exceptional Life-time Achievement Award' of the British Ecological Society - the aim for the fifth edition is not only to maintain standards but indeed to enhance its coverage of Ecology.

In the first edition, 34 years ago, it seemed acceptable for ecologists to hold a comfortable, objective, not to say aloof position, from which the ecological communities around us were simply material for which we sought a scientific understanding. Now, we must accept the immediacy of the many environmental problems that threaten us and the responsibility of ecologists to play their full part in addressing these problems. This fifth edition addresses this challenge, with several chapters devoted entirely to applied topics, and examples of how ecological principles have been applied to problems facing us highlighted throughout the remaining nineteen chapters. 

Nonetheless, the authors remain wedded to the belief that environmental action can only ever be as sound as the ecological principles on which it is based. Hence, while trying harder than ever to help improve preparedness for addressing the environmental problems of the years ahead, the book remains, in its essence, an exposition of the science of ecology. This new edition incorporates the results from more than a thousand recent studies into a fully up-to-date text. 

Written for students of ecology, researchers and practitioners, the fifth edition of Ecology: From Individuals to Ecosystems is anessential reference to all aspects of ecology and addresses environmental problems of the future. 



MICHAEL BEGON, PHD, is Professor of Ecology in the Department of Evolution, Ecology and Behaviour at the University of Liverpool. He specialises in the ecology of infectious diseases in wildlife populations, focusing on diseases transmissible to humans.
COLIN R. TOWNSEND, is Professor Emeritus and Founding Director of the Ecology, Conservation and Biodiversity Research Group of Otago University. His research concerns the ecology of invasions and multiple stressors in stream ecosystems.
mehr
Verfügbare Formate
BuchKartoniert, Paperback
EUR69,00
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR50,99
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR50,99

Produkt

KlappentextA definitive guide to the depth and breadth of the ecological sciences, revised and updated

The revised and updated fifth edition of Ecology: From Individuals to Ecosystems - now in full colour - offers students and practitioners a review of the ecological sciences. 

The previous editions of this book earned the authors the prestigious 'Exceptional Life-time Achievement Award' of the British Ecological Society - the aim for the fifth edition is not only to maintain standards but indeed to enhance its coverage of Ecology.

In the first edition, 34 years ago, it seemed acceptable for ecologists to hold a comfortable, objective, not to say aloof position, from which the ecological communities around us were simply material for which we sought a scientific understanding. Now, we must accept the immediacy of the many environmental problems that threaten us and the responsibility of ecologists to play their full part in addressing these problems. This fifth edition addresses this challenge, with several chapters devoted entirely to applied topics, and examples of how ecological principles have been applied to problems facing us highlighted throughout the remaining nineteen chapters. 

Nonetheless, the authors remain wedded to the belief that environmental action can only ever be as sound as the ecological principles on which it is based. Hence, while trying harder than ever to help improve preparedness for addressing the environmental problems of the years ahead, the book remains, in its essence, an exposition of the science of ecology. This new edition incorporates the results from more than a thousand recent studies into a fully up-to-date text. 

Written for students of ecology, researchers and practitioners, the fifth edition of Ecology: From Individuals to Ecosystems is anessential reference to all aspects of ecology and addresses environmental problems of the future. 



MICHAEL BEGON, PHD, is Professor of Ecology in the Department of Evolution, Ecology and Behaviour at the University of Liverpool. He specialises in the ecology of infectious diseases in wildlife populations, focusing on diseases transmissible to humans.
COLIN R. TOWNSEND, is Professor Emeritus and Founding Director of the Ecology, Conservation and Biodiversity Research Group of Otago University. His research concerns the ecology of invasions and multiple stressors in stream ecosystems.
Details
Weitere ISBN/GTIN9781119279372
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Erscheinungsjahr2020
Erscheinungsdatum11.11.2020
Auflage5. Auflage
Seiten864 Seiten
SpracheEnglisch
Dateigrösse106454 Kbytes
Artikel-Nr.5448696
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Cover;1
2;Title Page;5
3;Copyright Page;6
4;Contents;9
5;Preface;11
6;About the Companion Website;13
7;Introduction: Ecology and its Domain;14
8;Chapter 1 Organisms in their Environments: the Evolutionary Backdrop;17
8.1;1.1 Introduction: natural selection and adaptation;17
8.2;1.2 Specialisation within species;18
8.2.1;1.2.1 Geographic variation within species: ecotypes;19
8.2.2;1.2.2 Genetic polymorphism;21
8.3;1.3 Speciation;24
8.3.1;1.3.1 What do we mean by a `species´?;24
8.3.2;1.3.2 Allopatric speciation;24
8.3.3;1.3.3 Sympatric speciation;28
8.4;1.4 The role of historical factors in the determination of species distributions;32
8.4.1;1.4.1 Movements of landmasses;32
8.4.2;1.4.2 Island history;34
8.4.3;1.4.3 Climatic history;35
8.5;1.5 The match between communities and their environments;40
8.5.1;1.5.1 Terrestrial biomes of the earth;40
8.5.2;1.5.2 The `life form spectra´ of communities;43
8.6;1.6 The diversity of matches within communities;46
9;Chapter 2 Conditions;48
9.1;2.1 Introduction;48
9.2;2.2 Ecological niches;49
9.3;2.3 Responses of individuals to temperature;55
9.3.1;2.3.1 What do we mean by `extreme´?;55
9.3.2;2.3.2 Metabolism, growth, development and size;55
9.3.3;2.3.3 Ectotherms and endotherms;57
9.3.4;2.3.4 Life at low temperatures;60
9.3.5;2.3.5 The genetics of cold tolerance;61
9.3.6;2.3.6 Life at high temperatures;62
9.3.7;2.3.7 Temperature as a stimulus;64
9.4;2.4 Correlations between temperature and the distribution of plants and animals;65
9.4.1;2.4.1 Spatial and temporal variations in temperature;65
9.4.2;2.4.2 Typical temperatures and distributions;65
9.4.3;2.4.3 Distributions and extreme conditions;67
9.4.4;2.4.4 Distributions and the interaction of temperature with other factors;70
9.5;2.5 pH of soil and water;70
9.6;2.6 Salinity;72
9.6.1;2.6.1 Conditions at the boundary between the sea and land;73
9.7;2.7 Hazards, disasters and catastrophes: the ecology of extreme events;74
9.8;2.8 Environmental pollution;75
9.9;2.9 Global change;77
9.9.1;2.9.1 Industrial gases and the greenhouse effect;77
9.9.2;2.9.2 Global warming;79
10;Chapter 3 Resources;81
10.1;3.1 Introduction;81
10.2;3.2 Radiation;82
10.2.1;3.2.1 Variations in the intensity and quality of radiation;83
10.2.2;3.2.2 Net photosynthesis;85
10.2.3;3.2.3 Sun and shade plants of an evergreen shrub;89
10.3;3.3 Water;90
10.3.1;3.3.1 Photosynthesis or water conservation? Strategic and tactical solutions;90
10.3.2;3.3.2 Roots as water foragers;91
10.4;3.4 Carbon dioxide;93
10.4.1;3.4.1 C3, C4 and CAM;95
10.4.2;3.4.2 The response of plants to changing atmospheric concentrations of CO2;99
10.5;3.5 Mineral nutrients;103
10.6;3.6 Oxygen - and its alternatives;106
10.7;3.7 Organisms as food resources;107
10.7.1;3.7.1 The nutritional contents of plants and animals and their extraction;109
10.8;3.8 A classification of resources, and the ecological niche;111
10.8.1;3.8.1 Categories of resources;112
10.8.2;3.8.2 Resource dimensions of the ecological niche;113
10.9;3.9 A metabolic theory of ecology;113
11;Chapter 4 Matters of Life and Death;118
11.1;4.1 An ecological fact of life;118
11.2;4.2 Individuals;118
11.2.1;4.2.1 Unitary and modular organisms;118
11.2.2;4.2.2 Growth forms of modular organisms;120
11.2.3;4.2.3 Senescence - or the lack of it - in modular organisms;120
11.2.4;4.2.4 Integration;122
11.3;4.3 Counting individuals;122
11.4;4.4 Life cycles;124
11.5;4.5 Dormancy;127
11.5.1;4.5.1 Dormancy in animals: diapause;127
11.5.2;4.5.2 Dormancy in plants;128
11.6;4.6 Monitoring birth and death: life tables, survivorships curves and fecundity schedules;130
11.6.1;4.6.1 Cohort life tables;130
11.6.2;4.6.2 Survivorship curves;133
11.6.3;4.6.3 Static life tables;134
11.6.4;4.6.4 The importance of modularity;137
11.7;4.7 Reproductive rates, generation lengths and rates of increase;137
11.7.1;4.7.1 Relationships between the variables;137
11.7.2;4.7.2 Estimating the variables from life tables and fecundity schedules;138
11.8;4.8 Population projection models;139
11.8.1;4.8.1 Population projection matrices;139
11.8.2;4.8.2 Life table response experiments;143
11.8.3;4.8.3 Sensitivity and elasticity analysis;143
12;Chapter 5 Intraspecific Competition;148
12.1;5.1 Introduction;148
12.1.1;5.1.1 Exploitation and interference;148
12.2;5.2 Intraspecific competition, and density-dependent mortality, fecundity and growth;149
12.2.1;5.2.1 Density-dependent mortality and fecundity;149
12.2.2;5.2.2 Intraspecific competition and density-dependent growth;151
12.2.3;5.2.3 Density or crowding?;152
12.3;5.3 Quantifying intraspecific competition;155
12.4;5.4 Intraspecific competition and the regulation of population size;157
12.4.1;5.4.1 Carrying capacities;157
12.4.2;5.4.2 Net recruitment curves;158
12.4.3;5.4.3 Sigmoidal growth curves;159
12.5;5.5 Mathematical models: introduction;164
12.6;5.6 A model with discrete breeding seasons;165
12.6.1;5.6.1 Basic equations;165
12.6.2;5.6.2 What type of competition?;166
12.6.3;5.6.3 Time lags;167
12.6.4;5.6.4 Incorporating a range of competition;167
12.6.5;5.6.5 Chaos;168
12.6.6;5.6.6 Stochastic models;169
12.7;5.7 Continuous breeding: the logistic equation;170
12.8;5.8 Individual differences: asymmetric competition;171
12.8.1;5.8.1 Size inequalities;171
12.8.2;5.8.2 The generation and dilution of size inequalities;173
12.8.3;5.8.3 Asymmetry enhances regulation;175
12.8.4;5.8.4 Territoriality;175
12.9;5.9 Self-thinning;177
12.9.1;5.9.1 Dynamic thinning lines;178
12.9.2;5.9.2 Species and population boundary lines;180
12.9.3;5.9.3 A single boundary line for all species?;180
12.9.4;5.9.4 An areal basis for self-thinning;181
12.9.5;5.9.5 A resource-allocation basis for thinning boundaries;182
13;Chapter 6 Movement and Metapopulations;185
13.1;6.1 Introduction;185
13.2;6.2 Patterns of migration;186
13.3;6.3 Modes of dispersal;191
13.3.1;6.3.1 Passive dispersal;191
13.3.2;6.3.2 An active-passive continuum;192
13.3.3;6.3.3 Clonal dispersal;194
13.4;6.4 Patterns of dispersion;195
13.4.1;6.4.1 Patchiness;196
13.4.2;6.4.2 Forces favouring aggregation;196
13.4.3;6.4.3 Forces diluting aggregations: density-dependent dispersal;197
13.5;6.5 Variation in dispersal within populations;200
13.5.1;6.5.1 Dispersal polymorphism;200
13.5.2;6.5.2 Sex- and age-related differences;201
13.6;6.6 The demographic significance of dispersal;202
13.6.1;6.6.1 Dispersal and the demography of single populations;202
13.6.2;6.6.2 Invasion dynamics;205
13.6.3;6.6.3 Modelling dispersal: the distribution of patches;208
13.7;6.7 The dynamics of metapopulations;211
13.7.1;6.7.1 Uninhabited habitable patches;211
13.7.2;6.7.2 The development of metapopulation theory: islands and metapopulations;213
13.7.3;6.7.3 When is a population a metapopulation?;214
13.7.4;6.7.4 Metapopulation dynamics;215
14;Chapter 7 Life History Ecology and Evolution;222
14.1;7.1 Introduction;222
14.2;7.2 The components of life histories;223
14.2.1;7.2.1 Reproductive value;224
14.3;7.3 Trade-offs;226
14.3.1;7.3.1 Observing trade-offs;227
14.3.2;7.3.2 The cost of reproduction;229
14.3.3;7.3.3 The number and fitness of offspring;229
14.4;7.4 Life histories and habitats;230
14.4.1;7.4.1 Options sets and fitness contours;230
14.4.2;7.4.2 High and low CR habitats: a comparative classification;232
14.4.3;7.4.3 Reproductive investment and its timing;234
14.5;7.5 The size and number of offspring;237
14.5.1;7.5.1 The number of offspring: clutch size;239
14.6;7.6 Classifying life history strategies;242
14.6.1;7.6.1 r- and K-selection;242
14.6.2;7.6.2 A fast-slow continuum;243
14.6.3;7.6.3 Grime´s CSR triangle;248
14.7;7.7 Phylogenetic and allometric constraints;248
14.7.1;7.7.1 Effects of size and allometry;251
14.7.2;7.7.2 Effects of phylogeny;253
15;Chapter 8 Interspecific Competition;256
15.1;8.1 Introduction;256
15.2;8.2 Some examples of interspecific competition;257
15.2.1;8.2.1 Competition among phytoplankton species for phosphorus;257
15.2.2;8.2.2 Competition among plant species for nitrogen;258
15.2.3;8.2.3 Coexistence and exclusion of competing salmonid fishes;259
15.2.4;8.2.4 Some general observations;259
15.2.5;8.2.5 Coexistence of competing diatoms;260
15.2.6;8.2.6 Coexistence of competing birds;260
15.2.7;8.2.7 Competition between unrelated species;261
15.3;8.3 Some general features of interspecific competition - and some warnings;263
15.3.1;8.3.1 Unravelling ecological and evolutionary aspects of competition;263
15.3.2;8.3.2 A further warning: coexistence without niche differentiation?;263
15.3.3;8.3.3 Exploitation and interference competition and allelopathy;264
15.4;8.4 The Lotka-Volterra model of interspecific competition;265
15.4.1;8.4.1 The Lotka-Volterra model;265
15.4.2;8.4.2 Lessons from the Lotka-Volterra model;268
15.5;8.5 Consumer-resource models of competition;269
15.5.1;8.5.1 A model for a single resource;269
15.5.2;8.5.2 A model for two resources;269
15.5.3;8.5.3 Models with complex dynamics;271
15.5.4;8.5.4 Consumer-resource competition in practice;273
15.5.5;8.5.5 Spatial and temporal separation of niches;276
15.6;8.6 Models of niche overlap;277
15.6.1;8.6.1 Combining niche overlap and competitive similarity - a route to `neutral´ coexistence;277
15.6.2;8.6.2 A model of limiting similarity;278
15.7;8.7 Heterogeneity, colonisation and pre-emptive competition;279
15.7.1;8.7.1 Unpredictable gaps: the poorer competitor is a better coloniser;280
15.7.2;8.7.2 Unpredictable gaps: the pre-emption of space;280
15.7.3;8.7.3 Fluctuating environments;281
15.7.4;8.7.4 Aggregated distributions;282
15.8;8.8 Apparent competition: enemy-free space;286
15.9;8.9 Ecological effects of interspecific competition: experimental approaches;290
15.10;8.10 Evolutionary effects of interspecific competition;294
15.10.1;8.10.1 Natural experiments;294
15.10.2;8.10.2 Experimenting with natural experiments;297
15.10.3;8.10.3 Selection experiments;298
16;Chapter 9 The Nature of Predation;300
16.1;9.1 Introduction;300
16.1.1;9.1.1 The types of predators;300
16.1.2;9.1.2 Patterns of abundance and the need for their explanation;301
16.2;9.2 Foraging: widths and compositions of diets;301
16.2.1;9.2.1 Food preferences;302
16.2.2;9.2.2 Switching;304
16.2.3;9.2.3 The optimal foraging approach to diet width;305
16.2.4;9.2.4 Foraging in the presence of predators;308
16.3;9.3 Plants´ defensive responses to herbivory;310
16.3.1;9.3.1 Plant defences;310
16.3.2;9.3.2 Apparency theory;314
16.3.3;9.3.3 The timing of defence: induced chemicals;315
16.3.4;9.3.4 Defending what´s most valuable;320
16.3.5;9.3.5 Defence when times are hard;320
16.4;9.4 Effects of herbivory and plants´ tolerance of those effects;323
16.4.1;9.4.1 Herbivory, defoliation and plant growth;323
16.4.2;9.4.2 Herbivory and plant survival;324
16.4.3;9.4.3 Herbivory and plant fecundity;327
16.4.4;9.4.4 Meta-analyses of herbivory;328
16.5;9.5 Animal defences;330
16.6;9.6 The effect of predation on prey populations;332
16.6.1;9.6.1 Intimidation: the non-consumptive effects of risk;334
17;Chapter 10 The Population Dynamics of Predation;336
17.1;10.1 The underlying dynamics of consumer-resource systems: a tendency towards cycles;336
17.1.1;10.1.1 The Lotka-Volterra model;336
17.1.2;10.1.2 Delayed density dependence;339
17.1.3;10.1.3 The Nicholson-Bailey model;340
17.1.4;10.1.4 Predator-prey cycles in nature: or are they?;341
17.2;10.2 Patterns of consumption: functional responses and interference;341
17.2.1;10.2.1 The type 1 functional response;341
17.2.2;10.2.2 The type 2 functional response;342
17.2.3;10.2.3 The type 3 functional response;343
17.2.4;10.2.4 Individual and population-level satiation;343
17.2.5;10.2.5 Food quality;346
17.2.6;10.2.6 The effects of conspecifics - interference and ratio-dependent predation;346
17.3;10.3 The population dynamics of interference, functional responses and intimidation: equations and isoclines;348
17.3.1;10.3.1 The population dynamics of interference;348
17.3.2;10.3.2 The population dynamics of functional responses;351
17.3.3;10.3.3 The population dynamics of intimidation;354
17.4;10.4 Foraging in a patchy environment;355
17.4.1;10.4.1 Behaviour that leads to aggregated distributions;355
17.4.2;10.4.2 The optimal foraging approach to patch use;357
17.4.3;10.4.3 Ideal free and related distributions: aggregation and interference;363
17.5;10.5 The population dynamics of heterogeneity, aggregation and spatial variation;365
17.5.1;10.5.1 Aggregative responses to prey density;365
17.5.2;10.5.2 Heterogeneity in predator-prey models;366
17.5.3;10.5.3 Patch and lattice models;367
17.5.4;10.5.4 Aggregation, heterogeneity and spatial variation in practice;367
17.6;10.6 Beyond predator-prey;371
18;Chapter 11 Decomposers and Detritivores;373
18.1;11.1 Introduction;373
18.2;11.2 The organisms;374
18.2.1;11.2.1 Decomposers: bacteria, archaea and fungi;374
18.2.2;11.2.2 Detritivores and specialist microbivores;377
18.2.3;11.2.3 The relative roles of decomposers and detritivores;381
18.2.4;11.2.4 Are local communities predisposed to deal effectively with local litter?;383
18.2.5;11.2.5 Ecological stoichiometry and the chemical composition of decomposers, detritivores and their resources;385
18.3;11.3 Detritivore-resource interactions;387
18.3.1;11.3.1 Consumption of plant detritus;387
18.3.2;11.3.2 Feeding on invertebrate faeces;388
18.3.3;11.3.3 Feeding on vertebrate faeces;389
18.3.4;11.3.4 Consumption of carrion;391
19;Chapter 12 Parasitism and Disease;394
19.1;12.1 Introduction: parasites, pathogens, infection and disease;394
19.2;12.2 The diversity of parasites;394
19.2.1;12.2.1 Microparasites;395
19.2.2;12.2.2 Macroparasites;396
19.3;12.3 Hosts as habitats;397
19.3.1;12.3.1 The distribution of parasites within host populations: aggregation;397
19.3.2;12.3.2 Host specificity: host ranges and zoonoses;398
19.3.3;12.3.3 Hosts as resources and reactors;400
19.3.4;12.3.4 Hosts as reactors: resistance and recovery;400
19.3.5;12.3.5 Hosts as reactors: the cost of resistance;402
19.3.6;12.3.6 Hosts as reactors: resistance, tolerance and virulence;404
19.3.7;12.3.7 Competition among parasites for host resources;404
19.3.8;12.3.8 The power of coinfection;408
19.4;12.4 Coevolution of parasites and their hosts;408
19.5;12.5 The transmission of parasites amongst hosts;412
19.5.1;12.5.1 Transmission dynamics;412
19.5.2;12.5.2 Contact rates: density- and frequency-dependent transmission;412
19.5.3;12.5.3 Host diversity and the spread of disease;415
19.6;12.6 The effects of parasites on the survivorship, growth and fecundity of hosts;415
19.7;12.7 The population dynamics of infection;418
19.7.1;12.7.1 The basic reproductive number and the transmission threshold;419
19.7.2;12.7.2 Directly transmitted microparasites: R0 and the critical population size;419
19.7.3;12.7.3 Epidemic curves;420
19.7.4;12.7.4 Dynamic patterns of different types of parasite;420
19.7.5;12.7.5 Immunisation and herd immunity;422
19.7.6;12.7.6 Crop pathogens: macroparasites viewed as microparasites;424
19.7.7;12.7.7 Parasites in metapopulations;424
19.8;12.8 Parasites and the population dynamics of hosts;426
19.8.1;12.8.1 Red grouse and nematodes;427
19.8.2;12.8.2 An integral role for parasites?;430
20;Chapter 13 Facilitation: Mutualism and Commensalism;432
20.1;13.1 Introduction: facilitation, mutualists and commensals;432
20.2;13.2 Commensalisms;433
20.3;13.3 Mutualistic protectors - a behavioural association;436
20.3.1;13.3.1 Cleaners and clients;437
20.3.2;13.3.2 Ant-plant mutualisms;438
20.4;13.4 Farming mutualisms;439
20.4.1;13.4.1 Human agriculture;439
20.4.2;13.4.2 Farming of insects by ants;440
20.4.3;13.4.3 Farming of fungi by beetles and ants;441
20.5;13.5 Dispersal of seeds and pollen;444
20.5.1;13.5.1 Seed dispersal mutualisms;444
20.5.2;13.5.2 Pollination mutualisms;445
20.5.3;13.5.3 Brood site pollination: figs and yuccas;445
20.6;13.6 Mutualisms involving gut inhabitants;448
20.6.1;13.6.1 Vertebrate guts;448
20.6.2;13.6.2 The vertebrate gut metagenome;449
20.6.3;13.6.3 Insect guts;450
20.7;13.7 Mutualism within animal cells: insect bacteriocyte symbioses;452
20.8;13.8 Photosynthetic symbionts within aquatic invertebrates;454
20.9;13.9 Mutualisms involving higher plants and fungi;456
20.9.1;13.9.1 Arbuscular mycorrhizas;457
20.9.2;13.9.2 Ectomycorrhizas;458
20.9.3;13.9.3 Ericoid mycorrhizas;458
20.9.4;13.9.4 Orchid mycorrhizas;459
20.9.5;13.9.5 Mycorrhizal networks;459
20.10;13.10 Fungi with algae: the lichens;460
20.11;13.11 Fixation of atmospheric nitrogen in mutualistic plants;462
20.11.1;13.11.1 Mutualisms of rhizobia and leguminous plants;462
20.11.2;13.11.2 Nitrogen-fixing mutualisms in non-leguminous plants;466
20.11.3;13.11.3 Nitrogen-fixing plants and succession;466
20.12;13.12 Models of mutualisms;467
21;Chapter 14 Abundance;469
21.1;14.1 Introduction;469
21.2;14.2 Fluctuation or stability?;470
21.2.1;14.2.1 Determination and regulation of abundance;470
21.2.2;14.2.2 Approaches to the investigation of abundance;471
21.3;14.3 The demographic approach;472
21.3.1;14.3.1 Key factor analysis;472
21.3.2;14.3.2 ?-contribution analysis;474
21.4;14.4 The mechanistic approach;475
21.4.1;14.4.1 Experimental perturbation of populations;475
21.5;14.5 The time series approach;476
21.6;14.6 Population cycles and their analysis;482
21.6.1;14.6.1 Red grouse;482
21.6.2;14.6.2 Snowshoe hares;483
21.6.3;14.6.3 Microtine rodents: lemmings and voles;486
21.7;14.7 Multiple equilibria: alternative stable states;490
22;Chapter 15 Pest Control, Harvesting and Conservation;493
22.1;15.1 Managing abundance;493
22.2;15.2 The management of pests;494
22.2.1;15.2.1 Economic injury levels and economic thresholds;494
22.2.2;15.2.2 Chemical pesticides and their unintended consequences;495
22.2.3;15.2.3 Evolution of resistance to pesticides;497
22.2.4;15.2.4 Biological control;499
22.2.5;15.2.5 Integrated pest management;501
22.3;15.3 Harvest management;503
22.3.1;15.3.1 Maximum sustainable yield;504
22.3.2;15.3.2 Harvesting strategies based on MSY;505
22.3.3;15.3.3 Economic and social factors;508
22.3.4;15.3.4 Instability of harvested populations: depensation and multiple equilibria;509
22.3.5;15.3.5 Instability of harvested populations: environmental fluctuations;511
22.3.6;15.3.6 Recognising structure in harvested populations: dynamic pool models;511
22.3.7;15.3.7 Rules of thumb for sustainable harvesting;513
22.3.8;15.3.8 Ecosystem-based fisheries management?;514
22.4;15.4 Conservation ecology;517
22.4.1;15.4.1 Introduction;517
22.4.2;15.4.2 Small populations;518
22.4.3;15.4.3 Causes of extinction;521
22.4.4;15.4.4 Minimum viable populations and population viability analysis;527
22.4.5;15.4.5 Conservation of metapopulations;531
22.4.6;15.4.6 Decision analysis;534
23;Chapter 16 Community Modules and the Structure of Ecological Communities;538
23.1;16.1 Introduction;538
23.2;16.2 The influence of competition on community structure;539
23.2.1;16.2.1 Demonstrable competition between species;540
23.2.2;16.2.2 The structuring power of competition;540
23.2.3;16.2.3 Evidence from community patterns: niche differentiation;541
23.2.4;16.2.4 Niche differentiation - apparent or real? Null and neutral models;544
23.2.5;16.2.5 Evidence from morphological patterns - community-wide character displacement;547
23.2.6;16.2.6 Evidence from negatively associated distributions;548
23.2.7;16.2.7 Intransitive competition;549
23.3;16.3 The influence of predation on community structure;550
23.4;16.4 Plurality in the structuring of communities;556
24;Chapter 17 Food Webs;560
24.1;17.1 Food chains;560
24.1.1;17.1.1 Trophic cascades;560
24.1.2;17.1.2 Top-down or bottom-up control of food webs?;564
24.1.3;17.1.3 Why is the world green?;565
24.2;17.2 Food web structure, productivity and stability;567
24.2.1;17.2.1 What do we mean by `stability´?;568
24.2.2;17.2.2 Strong interactors and keystone species;569
24.2.3;17.2.3 Complexity and stability in model communities;571
24.2.4;17.2.4 Relating theory to data: aggregate properties;573
24.2.5;17.2.5 Relating theory to data: community structure;575
24.2.6;17.2.6 Compartmentalisation;577
24.2.7;17.2.7 Organisation of trophic loops;577
24.2.8;17.2.8 Food chain length: the number of trophic levels;580
24.2.9;17.2.9 Parasites in food webs;583
24.3;17.3 Regime shifts;584
25;Chapter 18 Patterns in Community Composition in Space and Time;588
25.1;18.1 Introduction;588
25.2;18.2 Description of community composition;590
25.2.1;18.2.1 Diversity indices;590
25.2.2;18.2.2 Rank-abundance diagrams;591
25.2.3;18.2.3 Community size spectra;593
25.3;18.3 Community patterns in space;594
25.3.1;18.3.1 Gradient analysis;594
25.3.2;18.3.2 The ordination of communities;594
25.3.3;18.3.3 Problems of boundaries in community ecology;597
25.4;18.4 Community patterns in time;597
25.4.1;18.4.1 Primary and secondary successions;598
25.4.2;18.4.2 Primary succession on volcanic lava;599
25.4.3;18.4.3 Primary succession on coastal sand dunes;599
25.4.4;18.4.4 Secondary successions in abandoned fields;601
25.5;18.5 The mechanisms underlying succession;602
25.5.1;18.5.1 A species replacement model of succession;602
25.5.2;18.5.2 A trade-off between competition and colonisation;602
25.5.3;18.5.3 Successional niche models;603
25.5.4;18.5.4 Facilitation;603
25.5.5;18.5.5 The role of animals;603
25.5.6;18.5.6 The role of functional traits;604
25.5.7;18.5.7 The nature of the climax;604
25.6;18.6 Communities in a spatiotemporal context;608
25.6.1;18.6.1 Disturbance, gaps and dispersal;608
25.6.2;18.6.2 The frequency of gap formation;608
25.6.3;18.6.3 Formation and filling of gaps;610
25.7;18.7 The metacommunity concept;615
25.7.1;18.7.1 The patch dynamics metacommunity model;615
25.7.2;18.7.2 The neutral metacommunity model;616
25.7.3;18.7.3 The species-sorting metacommunity model;616
25.7.4;18.7.4 The mass-effects metacommunity model;616
25.7.5;18.7.5 Patterns in abundance and diversity predicted by metacommunity models;617
25.7.6;18.7.6 The value and shortcomings of metacommunity models;617
26;Chapter 19 Patterns in Biodiversity and their Conservation;619
26.1;19.1 Introduction;619
26.1.1;19.1.1 Estimating richness: rarefaction and extrapolation;622
26.2;19.2 A simple model of species richness;623
26.3;19.3 Spatially varying factors that influence species richness;624
26.3.1;19.3.1 Productivity and resource richness;624
26.3.2;19.3.2 Energy;629
26.3.3;19.3.3 Spatial heterogeneity;632
26.3.4;19.3.4 Environmental harshness;632
26.4;19.4 Temporally varying factors that influence species richness;634
26.4.1;19.4.1 Climatic variation;634
26.4.2;19.4.2 Environmental age: evolutionary time;634
26.5;19.5 Habitat area and remoteness: island biogeography;635
26.5.1;19.5.1 MacArthur and Wilson´s `equilibrium´ theory;635
26.5.2;19.5.2 Habitat diversity alone - or a separate effect of area?;637
26.5.3;19.5.3 Remoteness;640
26.5.4;19.5.4 Which species? Turnover;641
26.5.5;19.5.5 Which species? Disharmony;642
26.5.6;19.5.6 Which species? Evolution;643
26.6;19.6 Gradients of species richness;647
26.6.1;19.6.1 Latitudinal gradients;647
26.6.2;19.6.2 Gradients with elevation and depth;649
26.6.3;19.6.3 Gradients during community succession;654
26.7;19.7 Selecting areas for conservation;655
26.8;19.8 Managing for multiple objectives - beyond biodiversity conservation;658
27;Chapter 20 The Flux of Energy through Ecosystems;663
27.1;20.1 Introduction;663
27.1.1;20.1.1 The fundamentals of energy flux;664
27.2;20.2 Patterns in primary productivity;665
27.2.1;20.2.1 Latitudinal trends in productivity;667
27.2.2;20.2.2 Temporal trends in primary productivity;667
27.2.3;20.2.3 Autochthonous and allochthonous production;668
27.2.4;20.2.4 Variations in the relationship of productivity to biomass;671
27.3;20.3 Factors limiting primary productivity in terrestrial communities;672
27.3.1;20.3.1 Inefficient use of solar energy;672
27.3.2;20.3.2 Water and temperature as critical factors;673
27.3.3;20.3.3 Drainage and soil texture can modify water availability and thus productivity;674
27.3.4;20.3.4 Length of the growing season;675
27.3.5;20.3.5 Productivity may be low because mineral resources are deficient;675
27.3.6;20.3.6 Do community composition and species richness affect ecosystem productivity?;677
27.4;20.4 Factors limiting primary productivity in aquatic communities;680
27.4.1;20.4.1 Limitation by light and nutrients in streams;680
27.4.2;20.4.2 Lakes and estuaries: the importance of nutrients and of autochthonous production;681
27.4.3;20.4.3 Nutrients and the importance of upwelling in oceans;681
27.4.4;20.4.4 Productivity varies with depth in aquatic communities;683
27.5;20.5 The fate of energy in ecosystems;684
27.5.1;20.5.1 Patterns among trophic levels;684
27.5.2;20.5.2 Possible pathways of energy flow through a food web;687
27.5.3;20.5.3 The importance of transfer efficiencies in determining energy pathways;688
27.5.4;20.5.4 Energy flow: spatial and temporal variation;690
28;Chapter 21 The Flux of Matter through Ecosystems;694
28.1;21.1 Introduction;694
28.1.1;21.1.1 Relationships between energy flux and nutrient cycling;694
28.1.2;21.1.2 Biogeochemistry and biogeochemical cycles;695
28.1.3;21.1.3 Nutrient budgets;696
28.2;21.2 Nutrient budgets in terrestrial communities;698
28.2.1;21.2.1 Inputs to terrestrial communities;698
28.2.2;21.2.2 Outputs from terrestrial communities;700
28.2.3;21.2.3 Carbon inputs and outputs may vary with forest age;701
28.2.4;21.2.4 Importance of nutrient cycling in relation to inputs and outputs;704
28.3;21.3 Nutrient budgets in aquatic communities;705
28.3.1;21.3.1 Streams;705
28.3.2;21.3.2 Lakes;706
28.3.3;21.3.3 Estuaries;708
28.3.4;21.3.4 Continental shelf regions of the oceans;709
28.3.5;21.3.5 Open oceans;712
28.4;21.4 Global biogeochemical cycles;714
28.4.1;21.4.1 Hydrological cycle;715
28.4.2;21.4.2 Phosphorus cycle;718
28.4.3;21.4.3 Nitrogen cycle;720
28.4.4;21.4.4 Sulphur cycle;720
28.4.5;21.4.5 Carbon cycle;721
29;Chapter 22 Ecology in a Changing World;724
29.1;22.1 Introduction;724
29.2;22.2 Climate change;727
29.2.1;22.2.1 Ecological risks;729
29.3;22.3 Acidification;736
29.3.1;22.3.1 Interactions among drivers;738
29.4;22.4 Land-system change;740
29.4.1;22.4.1 Expansion of the anthromes;740
29.4.2;22.4.2 Perturbation of nitrogen and phosphorus cycles;741
29.4.3;22.4.3 Downstream effects of nutrient cycle perturbations;742
29.5;22.5 Pollution;746
29.5.1;22.5.1 Chlorofluorocarbons, ozone depletion and UVB radiation;746
29.5.2;22.5.2 Mercury and persistent organic pollutants;747
29.5.3;22.5.3 Plastic waste;747
29.6;22.6 Overexploitation;749
29.7;22.7 Invasions;752
29.7.1;22.7.1 Winners and losers among invaders under climate change;752
29.7.2;22.7.2 Climate change, land-use change and invasion risk;754
29.8;22.8 Planetary boundaries;754
29.9;22.9 Finale;758
30;References;759
31;Organism Index;814
32;Subject Index;828
33;EULA;861
mehr