Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Lecture Notes on Principles of Plasma Processing

E-BookPDF1 - PDF WatermarkE-Book
208 Seiten
Englisch
SPRINGER USerschienen am06.12.20122003
Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes.

This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.
mehr
Verfügbare Formate
BuchKartoniert, Paperback
EUR160,49
E-BookPDF1 - PDF WatermarkE-Book
EUR149,79

Produkt

KlappentextPlasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes.

This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.
Details
Weitere ISBN/GTIN9781461501817
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2012
Erscheinungsdatum06.12.2012
Auflage2003
Seiten208 Seiten
SpracheEnglisch
IllustrationenXI, 208 p. 177 illus.
Artikel-Nr.7441206
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
Al: Introduction to Plasma Science.- I. What is a plasma?.- II. Plasma fundamentals.- A2: Introduction to Gas Discharges.- III. Gas discharge fundamentals.- A3: Plasma Sources I.- IV. Introduction to plasma sources.- A4: Plasma Sources II.- V. RIE discharges.- A5: Plasma Sources III.- VI. ECR sources.- VII. Inductively coupled plasmas (ICPs).- A6: Plasma Sources IV.- VIII. Helicon wave sources and HDPs.- IX. Discharge equilibrium.- A7: Plasma Diagnostics.- X. Introduction.- XI. Remote diagnostics.- XII. Langmuir probes.- XIII. Other local diagnostics.- Bl: Overview of Plasma Processing in Microelectronics Fabrication.- I. Plasma processing.- II. Applications in Microelectronics.- B2: Kinetic Theory and Collisions.- I. Kinetic theory.- II. Practical gas kinetic models and macroscopic properties.- III. Collision dynamics.- B3: Atomic Collisions and Spectra.- I. Atomic energy levels.- II. Atomic collisions.- III. Elastic collisions.- IV. Inelastic collisions.- B4: Molecular Collisions and Spectra.- I. Molecular energy levels.- II. Selection rule for optical emission of molecules.- III. Electron collisions with molecules.- IV. Heavy particle collisions.- V. Gas phase kinetics.- B5: Plasma Diagnostics.- I. Optical emission spectroscopy.- II. Laser induced fluorescence.- III. Laser interferometry.- IV. Full-wafer interferometry.- V. Mass spectrometry.- B6: Plasma Surface Kinetics.- I. Plasma chemistry.- II. Surface reactions.- III. Loading.- IV. Selectivity.- V. Detailed reaction modeling.- B7: Feature Evolution and Modeling.- I. Fundamentals of feature evolution in plasma etching.- II. Predictive modeling.- III. Mechanisms of profile evolution.- IV. Profile simulation.- V. Plasma damage.- Epilogue: Current Problems in Semiconductor Processing.- I. Front-end challenges.- 1. High-k dielectrics.- 2. Metal gates.- II. Back-end challenges.- 1. Copper metalllization.- 2. Interlayer dielectrics (ILDs).- 3. Barrier materials.- III. Patterning nanometer features.- 1. E-beam.- 2. Resist trimming.- IV. Deep reactive etch for MEMS.- V. Plasma-induced damage.- VI. Species control in plasma reactors.mehr