Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Integrated Sub-Millimeter-Wave High-Power Amplifiers in Advanced InGaAs-Channel HEMT Technology.

BuchKartoniert, Paperback
160 Seiten
Englisch
Fraunhofer Verlagerschienen am09.12.2021
Driven by the large absolute bandwidths that are available at the sub-mm-wave frequency range around 300 GHz, wireless high-data-rate communication systems and high-resolution imaging applications are being extensively investigated in recent years. Due to their superior characteristics in terms of noise figure and cutoff frequencies, InGaAs-channel HEMT devices have proven to be a key technology to implement the required active front-end MMICs for these wireless THz systems, enabling ultra-high bandwidths and state-of-the-art noise performance. This work describes the modeling, design, and characterization of 300-GHz HEMT-based power amplifier cells and demonstrates the implementation of highly compact amplifier MMICs and broadband waveguide modules. These amplifiers are key components for the implementation of high-performance chipsets for wireless THz systems, providing high output power for the utilization of next-generation communication and imaging applications. A unique amplifier topology based on multi-finger cascode and common-source devices is developed and evaluated, demonstrating more than 20-mW measured output power at the sub-mm-wave frequency range around 300 GHz.mehr

Produkt

KlappentextDriven by the large absolute bandwidths that are available at the sub-mm-wave frequency range around 300 GHz, wireless high-data-rate communication systems and high-resolution imaging applications are being extensively investigated in recent years. Due to their superior characteristics in terms of noise figure and cutoff frequencies, InGaAs-channel HEMT devices have proven to be a key technology to implement the required active front-end MMICs for these wireless THz systems, enabling ultra-high bandwidths and state-of-the-art noise performance. This work describes the modeling, design, and characterization of 300-GHz HEMT-based power amplifier cells and demonstrates the implementation of highly compact amplifier MMICs and broadband waveguide modules. These amplifiers are key components for the implementation of high-performance chipsets for wireless THz systems, providing high output power for the utilization of next-generation communication and imaging applications. A unique amplifier topology based on multi-finger cascode and common-source devices is developed and evaluated, demonstrating more than 20-mW measured output power at the sub-mm-wave frequency range around 300 GHz.
ZusammenfassungHighly broadband power amplifiers are a key building block of next generation high-capacity communication and high-resolution imaging solution at the lower THz frequency band around 300 GHz. This thesis describes the investigation and realization of such high-power amplifiers, implemented in an InGaAs mHEMT technology.

Schlagworte

Autor