Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Formability Consideration in Bead Optimization to Stiffen Deep Drawn Parts

BuchKartoniert, Paperback
145 Seiten
Englisch
TUM.University Presserschienen am10.08.2020
The development of lightweight technology has been continuously required in the automobile industry. In internal combustion engines, the lightweighting technology reduces CO2 emissions to alleviate the global warming, and in electric vehicles, it also reduces the consumption of charged electric energy to ensure a longer driving distance. In this study, a method of lightweight technologies by increasing the stiffness and reducing the thickness by changing the structure of the metal sheet using the topography method is introduced. To this end, the bead location along the major bending stress direction is determined to derive the maximum stiffness effect without iterative optimal calculation. We propose an actual manufacturable bead geometries at the determined bead location based on the anisotropic material model and the forming limit prediction model considering nonlinear loading path. This method automatically determines the bead location and geometry, which is actually manufacturable and has the maximum stiffness, with minimal iterative calculations.mehr

Produkt

KlappentextThe development of lightweight technology has been continuously required in the automobile industry. In internal combustion engines, the lightweighting technology reduces CO2 emissions to alleviate the global warming, and in electric vehicles, it also reduces the consumption of charged electric energy to ensure a longer driving distance. In this study, a method of lightweight technologies by increasing the stiffness and reducing the thickness by changing the structure of the metal sheet using the topography method is introduced. To this end, the bead location along the major bending stress direction is determined to derive the maximum stiffness effect without iterative optimal calculation. We propose an actual manufacturable bead geometries at the determined bead location based on the anisotropic material model and the forming limit prediction model considering nonlinear loading path. This method automatically determines the bead location and geometry, which is actually manufacturable and has the maximum stiffness, with minimal iterative calculations.