Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Digital Wood Design

E-BookPDF1 - PDF WatermarkE-Book
1535 Seiten
Englisch
Springer International Publishingerschienen am24.02.20191st ed. 2019
This book explores various digital representation strategies that could change the future of wooden architectures by blending tradition and innovation. Composed of 61 chapters, written by 153 authors hailing from 5 continents, 24 countries and 69 research centers, it addresses advanced digital modeling, with a particular focus on solutions involving generative models and dynamic value, inherent to the relation between knowing how to draw and how to build. Thanks to the potential of computing, areas like parametric design and digital manufacturing are opening exciting new avenues for the future of construction. The book's chapters are divided into five sections that connect digital wood design to integrated approaches and generative design; to model synthesis and morphological comprehension; to lessons learned from nature and material explorations; to constructive wisdom and implementation-related challenges; and to parametric transfigurations and morphological optimizations.mehr
Verfügbare Formate
BuchGebunden
EUR353,09
E-BookPDF1 - PDF WatermarkE-Book
EUR341,33

Produkt

KlappentextThis book explores various digital representation strategies that could change the future of wooden architectures by blending tradition and innovation. Composed of 61 chapters, written by 153 authors hailing from 5 continents, 24 countries and 69 research centers, it addresses advanced digital modeling, with a particular focus on solutions involving generative models and dynamic value, inherent to the relation between knowing how to draw and how to build. Thanks to the potential of computing, areas like parametric design and digital manufacturing are opening exciting new avenues for the future of construction. The book's chapters are divided into five sections that connect digital wood design to integrated approaches and generative design; to model synthesis and morphological comprehension; to lessons learned from nature and material explorations; to constructive wisdom and implementation-related challenges; and to parametric transfigurations and morphological optimizations.
Details
Weitere ISBN/GTIN9783030036768
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2019
Erscheinungsdatum24.02.2019
Auflage1st ed. 2019
Reihen-Nr.24
Seiten1535 Seiten
SpracheEnglisch
IllustrationenXXI, 1535 p. 1045 illus., 856 illus. in color.
Artikel-Nr.4171680
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Contents;6
2;Introduction;12
2.1;DWD;12
2.2;Drawing as Model;14
2.3;The Structure of the Volume;18
3;Integrated Approach and Generative Design;23
4;WOOD, CAD AND AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to Design Timber Architecture;24
4.1;1 Introduction;25
4.2;2 Background;32
4.3;3 Methods and Materials;34
4.4;4 Experimentations;35
4.4.1;4.1 Responsive Architecture: Study, Characterization and Realization of  Unplywood Panels for Passive Ventilation Systems;35
4.4.2;4.2 Innovations and Experimentations for Double-Curved Timber Surfaces: Design and Characterization of a Flexible and Engineered Solid Wood Panel;40
4.4.3;4.3 Redrawing Descriptive and Projective Geometry: Generative Design of Stereotomy and Japanese Joints for CAD/CAM Application;44
4.4.4;4.4 Wooden Tensegrity Structures and Morphological Evolutions of Transpolyhedra;49
4.4.5;4.5 AI for Mass-Customized Housing. Multi-objective Optimization as a Decision Support System;53
4.4.6;4.6 The Ames Room Pavilion. The Reinterpretation of the Classical by Generative Design;58
4.5;5 Conclusions;66
4.6;References;67
5;Beyond Form Definition: Material Informed Digital Fabrication in Timber Construction;82
5.1;1 Introduction;83
5.2;2 Patterns of Innovation in Materials and Their Consequences;86
5.2.1;2.1 Steel;86
5.2.2;2.2 Concrete;88
5.3;3 Current Innovation Relating to Wood;89
5.3.1;3.1 Innovation-Customized Timber Products;89
5.3.2;3.2 Innovation-Digital Design;90
5.3.3;3.3 Innovation-Engineering Analysis;91
5.3.4;3.4 Engaging with Material Characteristics;91
5.3.5;3.5 Innovation-Fabrication;94
5.3.6;3.6 Innovation: Summary;95
5.4;4 Methodology;95
5.5;5 Results;96
5.5.1;5.1 Prototype 1;96
5.5.2;5.2 Prototype 2;102
5.6;6 Discussion;108
5.7;7 Conclusion;110
5.8;References;111
6;New Workflows for Digital Timber;114
6.1;1 Introduction;115
6.1.1;1.1 Background;115
6.1.2;1.2 CITA and Innochain;116
6.1.3;1.3 A New Case for Timber;116
6.2;2 The Material Complexity of Timber;117
6.2.1;2.1 Diversity in Wood;117
6.2.2;2.2 Fibre in Construction;120
6.3;3 Three Experiments;121
6.3.1;3.1 Experiment 1: The Fibre;122
6.3.2;3.2 Experiment 2: The Blank;129
6.3.3;3.3 Experiment 3: The Structure;146
6.4;4 Conclusion;151
6.4.1;4.1 Digitally Designed Wood;151
6.4.2;4.2 Extended Digital Production;152
6.4.3;4.3 Digital Interfaces Across Disciplinary Silos;152
6.4.4;4.4 The Way Forward;154
6.5;References;154
7;Negotiated Materialization: Design Approaches Integrating Wood Heterogeneity Through Advanced Robotic Fabrication;156
7.1;1 Introduction;157
7.1.1;1.1 Dynamic Blueprints and Cyber Physical Making;157
7.1.2;1.2 Digital Negotiations in Wood Constructions;158
7.2;2 Tolerance Management in Digital Fabrication: Case Studies;159
7.2.1;2.1 Fusta Robotica and  Digital Urban Orchard ;160
7.2.2;2.2 Fusta Robotica: Design Against Material;161
7.2.3;2.3 Digital Urban Orchard : Design with Tolerances;163
7.2.4;2.4 Digital Woodcraft and  Robotic Sawmill : Design and Fabrication Strategies Based on Natural Wood Characteristics;167
7.3;3 Digital Craftsmanship;170
7.3.1;3.1 Adaptive Robotic Carving : Digital Craftsmanship and Machine Learning;171
7.4;4 Conclusions;175
7.5;References;178
8;Advanced Timber Concepts and the Design of Furniture and Structures;180
8.1;1 Introduction;181
8.2;2 The Architecture of Furniture;183
8.3;3 Flat-Pack Housing;186
8.4;4 Generative Fabrications;187
8.4.1;4.1 Gridshell Experiment;188
8.4.2;4.2 Research Pavilions;190
8.5;5 Complex Timber Structures;199
8.5.1;5.1 South Hedland Shade Structure;202
8.5.2;5.2 Pingelly Cultural and Recreation Centre;205
8.5.3;5.3 Forestry Tower;210
8.6;6 Designer-Material Relationships and Conclusion;213
8.7;References;215
9;Lattice Shell Methodologies: Material Values, Digital Parameters;216
9.1;1 Introduction;216
9.2;2 Lattice Shell Precedents;218
9.3;3 Parametric Process as Manipulable System from Design to Construction;219
9.4;4 Lattice Shell Principles;220
9.5;5 Parametric Approach;222
9.6;6 Lath Pattern: Projected, Applied, and Geodesic;222
9.7;7 Previous Work;223
9.8;8 Parametric Lattice Shell Development;224
9.8.1;8.1 Parametric Wood Seminar;224
9.8.2;8.2 Smart Geometry Gridshell;225
9.9;9 Korlandia Gridshell;227
9.9.1;9.1 Design Process;228
9.9.2;9.2 Material Constraints and Analysis;229
9.9.3;9.3 Design for Fabrication;231
9.9.4;9.4 Steel Fabrication and Erection;232
9.9.5;9.5 Lath Fabrication and Assembly;233
9.9.6;9.6 Scanning and Verification;236
9.9.7;9.7 Sheathing;239
9.10;10 Conclusion;240
9.11;References;241
10;Toward Mass Customized Architecture. Applying Principles of Mass Customization While Designing Site-Specific, Customer-Inclusive and Bespoke Timber Structures;242
10.1;1 Introduction;243
10.2;2 The Computational Workflow;245
10.2.1;2.1 Software Platform;245
10.2.2;2.2 Workflow;246
10.3;3 Establishment of a Shared Parametric Approach for Architects, Structural Engineers and Manufacturers;248
10.3.1;3.1 Architect´s Conception of an Element;249
10.3.2;3.2 Structural Engineer´s Conception of an Element;249
10.3.3;3.3 Manufacturer´s Conceptions of an Element;250
10.3.4;3.4 A Solution that Integrates the Three Conceptions;250
10.4;4 Rethinking Parametric Detailing: Introducing Property-Based Detailing Groups;251
10.4.1;4.1 Detailing Groups;253
10.4.2;4.2 Node Properties;256
10.5;5 Digital Subtractive Tools;257
10.5.1;5.1 Architect;258
10.5.2;5.2 Structural Engineer;259
10.5.3;5.3 Manufacturer;259
10.5.4;5.4 Finding a Shared Detailing Solution;260
10.6;6 Case Studies;262
10.6.1;6.1 Orkla Bridges;262
10.6.2;6.2 Freestyle Water Ramp;264
10.6.3;6.3 Log House Sauna;264
10.6.4;6.4 Plywood Shelf;267
10.7;7 Discussion and Conclusion;267
10.8;References;269
11;Reciprocal Implications Between Design and Construction Process of Timber Gridshell;271
11.1;1 Introduction;272
11.2;2 Gridshell Form Finding Tool 2.0;273
11.2.1;2.1 The Bent Timber Gridshell;273
11.2.2;2.2 The Chain Last Link;274
11.3;3 The First Experimental Applications of the Tool;276
11.3.1;3.1 The Covering of the Entrance to the Archaeological Park of San Vincenzo al Volturno;276
11.3.2;3.2 The Coverage of the Remains of the Neolithic Settlement of the Campi Diomedei Park in Foggia;280
11.3.3;3.3 The Idea of the New Tool and Its First Application;283
11.4;4 Conclusions;283
11.5;References;284
12;Reinterpretation of Traditional Wood Structures with Digital Design and Fabrication Technologies;285
12.1;1 Introduction;285
12.2;2 REVERSE RAFTER-Reinterpretation of Traditional Chinese Wood Tectonics;287
12.2.1;2.1 Prototype Research;287
12.2.2;2.2 Structural Performance Simulation and Optimization;289
12.2.3;2.3 Digital Fabrication;291
12.2.4;2.4 Evaculation;292
12.3;3 DigitalFUTURE 2017 Gridshell-Reinterpretation of Strained Gridshell;293
12.3.1;3.1 Grid Pattern Generation and Optimization;294
12.3.2;3.2 Structural Optimization;296
12.3.3;3.3 Robotic Fabrication and Assembly;298
12.3.4;3.4 Results and Discussion;301
12.4;4 Conclusion;302
12.5;References;302
13;Centrality of Representation As a Synthesis Model and Morphological Comprehension;303
14;Wood as an Essential Material in Architectural and Civil Engineering Models from the Renaissance to the Architectural Avant-Garde;304
14.1;1 Introduction;304
14.2;2 Wood as a Scale Building Material;306
14.3;3 The Models of Antiquity and the Dark Centuries;308
14.4;4 The Golden Age of Wooden Models: The Renaissance;308
14.5;5 Virtuosity in Model Making During the Baroque Period;311
14.6;6 The Triumph of Drawing Over Models: Beaux Arts Versus Industrialization;318
14.7;7 The Anthropocene Models: Two Iconic Examples;323
14.7.1;7.1 The Tatlin Tower;323
14.7.2;7.2 Adolf Loos´ House for Joséphine Baker;324
14.8;8 Models as Design Instruments in Contemporary Architecture: Some Pritzker Prizes;326
14.9;9 Some Unique Uses: From Palladio to  Plans-Reliefs ;329
14.9.1;9.1 Scenography as a Distorted Model of Reality;329
14.9.2;9.2 Plans-Reliefs or City Models;330
14.9.3;9.3 Photography as Trompe L´oeil;333
14.9.4;9.4 The Model of the Great Hall of the Elbphilharmonie;334
14.10;10 New Technologies in the Manufacture of Wooden Models;335
14.11;11 Conclusions;337
14.12;References;338
15;The Wooden Models of the Vatican Basilica by Antonio da Sangallo and Michelangelo: Survey, Modelling and Interpretation;340
15.1;1 Introduction;341
15.2;2 Tangible Versus Intangible;344
15.3;3 Sangallo´s and Michelangelo´s Models: Capturing, Study and Reconstruction;345
15.4;4 Conclusions;360
15.5;References;360
16;Representing with Wood: Carlo Lucangeli and the Model of the Flavian Amphitheatre;362
16.1;1 Carlo Lucangeli and the Modeling Tradition;362
16.2;2 The Survey of a Wooden Model: Purposes and Methodologies;365
16.2.1;2.1 Purposes;365
16.2.2;2.2 Methodologies and Results;367
16.3;3 Composition and Decomposition: The Wooden Model as an Instrument of Knowledge and Communication;372
16.3.1;3.1 Composition and Knowledge;372
16.3.2;3.2 Decomposition and Communication;389
16.4;4 Conclusion;390
16.5;References;391
17;The Teatro of Bologna as a Transformable Space: Drawing, Geometry and Invention in the Study of the Wooden Model of the Theater by Antonio Galli Bibiena;393
17.1;1 The Galli-Bibiena Family and the Tradition of Theatrical Scenery in Bologna;393
17.2;2 The Teatro of Bologna as a Transformable Space;394
17.3;3 Modelling the Theatre, a Wooden Tool for Design Visualization: 3D Reconstruction and Analysis Workflow;399
17.4;4 The Teatro of Bologna as Transformable Space: Illustrating the Wooden Mechanism;404
17.5;5 Conclusions;410
17.6;References;412
18;Learning by Prototyping: Wood Design Course Experience;413
18.1;1 Introduction;413
18.2;2 Before You Run Learn to Walk;415
18.3;3 Contact , When the Best Design Found the Digital Fabrication;418
18.4;4 Add a Seat to the Table and  from the Tree to the Design Projects: Build Together, Learn Together;420
18.5;5 Students Wooden Start-Up Companies;425
18.6;6 Conclusion;429
18.7;References;431
19;Parametric Kerf Bending: Manufacturing Double Curvature Surfaces for Wooden Furniture Design;432
19.1;1 Introduction;433
19.2;2 Theoretical Background-Geometry;433
19.2.1;2.1 Differential Classification of Surfaces;434
19.2.2;2.2 Developable Surfaces;435
19.2.3;2.3 From 3D to 2D Shape to Cut;436
19.2.4;2.4 Non Developable Surfaces;437
19.3;3 Theoretical Background-How to Make Wood Flexible;439
19.3.1;3.1 Cutting Only on One Side of the Panel;440
19.3.2;3.2 Cutting on Both Sides;441
19.3.3;3.3 Cutting Through Thickness of the Panel;442
19.4;4 Experimentation Process-Different Approaches;444
19.4.1;4.1 Prototypes;445
19.4.2;4.2 Pattern Design Process;446
19.4.3;4.3 Relation Between Pattern and Curvature: Tests Prototypes;447
19.5;5 Design Results;448
19.5.1;5.1 An Hyperbolic Paraboloid to Design a Stool;452
19.6;6 Digital Fabrication: Problems and Solutions;454
19.7;7 Conclusions and Further Research;455
19.8;References;456
20;Digital Joinery for Hybrid Carpentry;457
20.1;1 Introduction;457
20.2;2 Related Work;458
20.3;3 Wood Joinery: From Traditional to Digital;459
20.4;4 Digital Joinery for Hybrid Carpentry;460
20.5;5 Digital Joinery Anchors;460
20.6;6 Generative Joinery Design Tool (GJDT);463
20.7;7 The Hybrid Design Process and Workflow;466
20.8;8 Design Case: Stool Collection;468
20.9;9 Evaluation;470
20.10;10 Conclusions and Future Work;474
20.11;References;476
21;Geometric Patterns and the Art of Kundekari in Traditional Turkish Woodworking;478
21.1;1 Introduction;478
21.2;2 General Characteristics of Kundekari Technique;480
21.2.1;2.1 Real Kundekari;480
21.2.2;2.2 False Kundekari;482
21.3;3 Geometric Motif Use in Kundekari Technique;483
21.4;4 Kundekari Examples;484
21.5;5 Kundekari Technique in Restorations;487
21.6;6 Conclusion;490
21.7;References;493
22;Digital Wood Trusses. Geometry and Parameters/Fabrication and Monitoring;494
22.1;1 Introduction;495
22.2;2 Literary Review;496
22.3;3 Methodology;500
22.3.1;3.1 Stereotomy and Woodworking;503
22.3.2;3.2 The BIM Model: Parameterization and Interoperability;505
22.4;4 Case Study;508
22.4.1;4.1 Structure of the Roof of the Church of the Eremitani;508
22.4.2;4.2 The BIM Model: Relationship Between Parameters;512
22.5;5 Conclusions;518
22.6;References;523
23;Digital Technologies for Cultural Heritage: 3D Representation of Complex Wooden Structures;525
23.1;1 Introduction;526
23.2;2 The Metric Acquisition in the Ducal Palace;527
23.3;3 Surveying a Wooden Dome;528
23.3.1;3.1 The Dome of SS. Giovanni e Paolo;529
23.3.2;3.2 On-site Data Acquisition;530
23.3.3;3.3 Data Processing;532
23.3.4;3.4 3D Digital Representations;533
23.3.5;3.5 The Purpose of the 3D Model;535
23.4;4 Surveying Wooden Trusses;536
23.4.1;4.1 The History of the Magazzini del Sale;537
23.4.2;4.2 Integrated Techniques for Data Acquisition;538
23.4.3;4.3 Data Elaboration;540
23.4.4;4.4 Representations and Final Considerations;541
23.5;5 Conclusions;543
23.6;References;544
24;AHBIM for Wooden Built Heritage Conservation;547
24.1;1 Introduction;548
24.2;2 AH-BIM for the Architectural Heritage;549
24.3;3 Survey and Analysis;550
24.4;4 Parametric Modeling;554
24.5;5 Knowledge Sharing: Virtual Reality and Cloud-Based Platforms;556
24.6;6 Conclusion;558
24.7;References;559
25;Shape and Design of Ancestral Fishing Machines Between Geometry and Technology;561
25.1;1 Introduction;561
25.2;2 Constructive Elements Technology;563
25.2.1;2.1 Platform;563
25.2.2;2.2 Cabin;564
25.2.3;2.3 Winch;564
25.2.4;2.4 Flagpoles;565
25.2.5;2.5 Load Bearing Poles;565
25.2.6;2.6 Net;567
25.2.7;2.7 Catwalk;567
25.3;3 Analysis of Materials Decay;568
25.4;4 Phases for a Methodic and Coherent Preservation;570
25.5;5 Preservation and Reconstruction Activity;572
25.6;6 Conclusion;574
25.7;References;577
26;3D Digital Systems for the Documentation and Representation of the Wooden Heritage Between Finland and Russia: Survey Methods and Procedures for Detailed Analysis;578
26.1;1 Introduction;579
26.1.1;1.1 The Support of European Funding Schemes;581
26.2;2 The Case Studies Between Russia and Finland;584
26.3;3 Research Approach and Criterions;588
26.4;4 Digital Survey Methods and Procedures for the Documentation of Wooden Heritage;591
26.4.1;4.1 Post Production Phase and Out-Puts Obtained from the Data Acquired;597
26.4.2;4.2 Final Results: Digital Documentations and Representations;602
26.5;5 Conclusion;604
26.6;References;606
27; Techos de Armaduras in Cuban Colonial Architecture: Cuban Coverings from XVII to XVIII Century;607
27.1;1 Introduction;607
27.2;2 Coverings in Mudéjar Architecture;608
27.3;3 Comparison Between European and Mudéjar Roofings;611
27.4;4 Main Features of Mudéjar Architecture in Cuba;614
27.5;5 Declination in the Constructive System of Cuban Colonial Architecture;616
27.6;6 Mudéjar Decorations in Cuba;622
27.7;7 Survey and Structure Form Motion of Cuban Roofs;624
27.8;8 Conclusions;632
27.9;References;633
28;The Caribbean Bahareque: From Living Branches to the Wall;635
28.1;1 Introduction;636
28.2;2 From Living Branches to the Wall;637
28.2.1;2.1 The Bahareque;640
28.3;3 Conclusion;646
28.4;References;646
29;Connection Between Nature Lessons and Material Explorations;648
30;Computational Mechanical Modelling of Wood-From Microstructural Characteristics Over Wood-Based Products to Advanced Timber Structures;649
30.1;1 Introduction;650
30.1.1;1.1 Motivation;651
30.1.2;1.2 Structure and Objectives;652
30.2;2 Computational Modelling Tools;654
30.2.1;2.1 Extended Finite Element Method (XFEM);657
30.2.2;2.2 Limit Analysis (LA);658
30.2.3;2.3 Elastic Limit (EL) Approach;659
30.3;3 Multiscale Model for Wood;661
30.4;4 Mechanical Behavior of Wood;662
30.4.1;4.1 Effective Strengths at Annual Ring and Clear Wood Scale;663
30.4.2;4.2 Morphology Identification at Wooden Board Scale;667
30.4.3;4.3 Effective Strengths at Wood-Product Scale;669
30.4.4;4.4 Stochastic Aspects;671
30.5;5 Elastically-Deformed Wooden Structures;672
30.5.1;5.1 Design Procedure;673
30.5.2;5.2 Deformation Data;674
30.5.3;5.3 Interaction and Relaxation;675
30.6;6 Geometric Design Concepts Applicable to Wood;676
30.6.1;6.1 Geodesic Strips;676
30.6.2;6.2 Freeform Structures from Flat Panels and Straight Beams;678
30.7;7 Conclusion;679
30.8;References;680
31;Hygroscapes: Innovative Shape Shifting Façades;684
31.1;1 Introduction;685
31.2;2 Relevant Work;687
31.3;3 Hygroscopic Properties of Wood: Preliminary Experiments;688
31.3.1;3.1 Dimensional Ratio;689
31.3.2;3.2 Grain Orientation;689
31.3.3;3.3 Lamination;692
31.4;4 Shape Shifting Prototypes;693
31.4.1;4.1 Method;693
31.4.2;4.2 Prototype 1;694
31.4.3;4.3 Prototype 2;697
31.4.4;4.4 Prototype 3;699
31.4.5;4.5 Prototype 4;702
31.4.6;4.6 Prototype 5;702
31.5;5 Discussion;704
31.5.1;5.1 Shape Shifting Mechanisms;704
31.5.2;5.2 Shape Shifting Grammars;708
31.6;6 Conclusion;709
31.7;References;710
32;Adaptive Wooden Architecture. Designing a Wood Composite with Shape-Memory Behavior;712
32.1;1 Introduction: A New Understanding of Wood as an Architectural Material;713
32.2;2 Curved Surfaces and Kerfing Techniques;715
32.3;3 Developing and Testing the Responsive Polymer Resin;717
32.4;4 Fabrication of the Wood Composite;721
32.5;5 Conclusion;723
32.6;References;725
33;Geometry-Induced System of Controlled Deformations. Application in Self-organized Wooden Gridshell Structures;727
33.1;1 Introduction;727
33.2;2 Background;728
33.2.1;2.1 Transformable Structures;728
33.2.2;2.2 Self-formation Processes in Bending-Active Structures;729
33.3;3 Inspiration from Microscale and Research Objectives;730
33.3.1;3.1 Self-actuating Mechanisms of Natural and Synthetic Composites;730
33.3.2;3.2 Wood as a Case Study Material;731
33.3.3;3.3 Research Framework;732
33.4;4 Geometry-Induced Variable Stiffness Elements;733
33.4.1;4.1 System´s Principle of Operation;733
33.4.2;4.2 Design Process and Geometrical Parameters;735
33.5;5 Physical Experiments;737
33.5.1;5.1 Suspended Gridshell;738
33.5.2;5.2 Cantilevering Gridshell;740
33.6;6 Results from Physical Experiments;742
33.6.1;6.1 Geometrical Evaluation of Suspended Gridshell;742
33.6.2;6.2 Geometrical Evaluation of Cantilevering Gridshell;744
33.6.3;6.3 General Evaluation and Discussion;747
33.7;7 Conclusion;747
33.8;References;748
34;Natural Complexity. An Introduction to Structural Design with Tree Forks;751
34.1;1 Introduction;751
34.2;2 Aims;753
34.3;3 Digital Nature;753
34.3.1;3.1 Data Capturing;754
34.3.2;3.2 Abstraction Principles and Control Geometry;755
34.4;4 Aggregation Principles;757
34.4.1;4.1 Discrete Element Aggregation;757
34.5;5 Joining;762
34.5.1;5.1 Joining Principles;762
34.5.2;5.2 Joints;763
34.6;6 Structural Evaluation;764
34.7;7 Speculation of Use;765
34.8;8 Conclusion and Outlook;767
34.9;References;767
35;Evaluation of Wooden Structures;768
35.1;1 Introduction;768
35.2;2 Using Wood for Construction;770
35.3;3 Importance of Evaluating Buildings in Terms of Ecology and Sustainability;773
35.4;4 Methods Used in the Evaluation of Structural Timber Members;774
35.4.1;4.1 Species Identification;774
35.4.2;4.2 Estimation of Moisture Content;775
35.4.3;4.3 Semi-destructive and Non-destructive Techniques;777
35.5;5 Conclusion;785
35.6;References;786
36;Solid Wood and Wood Based Composites: The Challenge of Sustainability Looking for a Short and Smart Supply Chain;789
36.1;1 Introduction;790
36.2;2 Forest Supply and the Role of Short Forest-Wood Supply Chain;791
36.3;3 Forest Certification;796
36.3.1;3.1 Forest Certification, a Tool for Local and Sustainable Forest Supply Chain;798
36.4;4 Solid Wood and Wood Base Composites: A Smart Overview;800
36.5;5 Improving Performances: Gluing and Wood Treatments;806
36.6;6 Possibility of Using Short Chain Species for Structural Purposes. Mechanical Characterization, Modelling and Italian Case Studies;807
36.6.1;6.1 Technological Potentials and Technical Regulations for Some Type of Products, Especially for Structural Purposes;808
36.7;7 Conclusion;810
36.8;References;811
37;Bamboo´s Bio-inspired Material Design Through Additive Manufacturing Technologies;814
37.1;1 Introduction to Bamboo Anatomy and Mechanics;814
37.2;2 Background;818
37.3;3 Design of Biomimetic Bamboo-Like Material: Framework;819
37.3.1;3.1 Modeling;820
37.3.2;3.2 Fabrication;823
37.3.3;3.3 Experimental Tests;827
37.4;4 Conclusions;829
37.5;References;830
38;Microtimber: The Development of a 3D Printed Composite Panel Made from Waste Wood and Recycled Plastics;832
38.1;1 Introduction;832
38.2;2 Developing the 3D Printing Technology for a New Gradient Timber-like Aesthetic;833
38.2.1;2.1 Aesthetic Perceptions: Solid Wood Versus Wood-Plastic Composites;834
38.2.2;2.2 Timber-like : Developing Advanced 3D Printing Technologies to Generate a New Wood Aesthetic;834
38.2.3;2.3 Manipulation of Print Parameters to Define Wood Grain and Colour;835
38.2.4;2.4 Algorithms to Generate Timber-like Textures for a Microtimber;836
38.2.5;2.5 Flexibility to Manipulate 3D Surface;838
38.3;3 Experimenting with Material Composition-New Wood-Plastic Composites;840
38.3.1;3.1 Rationale for the Selection of Wood Species and Their Relevant Properties;841
38.3.2;3.2 3D Printability and Particle Size;841
38.3.3;3.3 Mechanical Performance of the Wood-Plastic Composites;842
38.3.4;3.4 Recycling and Re-Extrusion;844
38.3.5;3.5 Future Research into Wood-Plastic Composites for 3D Printing;844
38.4;4 Evaluation of Microtimber in Terms of Building Life Cycle Assessment (LCA);845
38.4.1;4.1 Life Cycle Assessment of Buildings: General Framework;845
38.4.2;4.2 Expected Environmental Performance of Microtimber;848
38.5;5 Conclusion;852
38.6;References;852
39;Constructive Wisdom and Realization Challenges;854
40;Seeing a Tree as a Prerequisite to Timber Architecture;855
40.1;1 Introduction;855
40.2;2 Theoretical Frameworks: The Algebra of Shapes and Gestalt Laws;857
40.2.1;2.1 The Algebra of Shape Uij;857
40.2.2;2.2 Gestalt Redux;859
40.2.3;2.3 A  Good Shape for a Digital Tree;861
40.2.4;2.4 A  Good Shape for the Timber Industry;863
40.3;3 Perceiving a Tree in Architectural Timber;865
40.3.1;3.1 Seeing a House and Its Parts;866
40.4;4 Seeing a Tree in a House and a House in a Tree;868
40.4.1;4.1 Hybrid-Timber;869
40.5;5 Conclusion;871
40.6;References;872
41;Constructing Correctly in Wood: New Insights into Timber Technology Approaches Through Purist and Liberalist Schools of Thought;874
41.1;1 Introduction;874
41.1.1;1.1 Constructing Correctly;875
41.1.2;1.2 Constructing Correctly in Timber;876
41.2;2 Context;876
41.2.1;2.1 Purist View;878
41.2.2;2.2 Liberalist View;878
41.2.3;2.3 Spectrum;879
41.3;3 Tectonics of Timber Assemblies;879
41.3.1;3.1 The Changing Characteristics of Wood;882
41.3.2;3.2 New Timber Products;883
41.3.3;3.3 Fastenings;884
41.4;4 Timber Gridshells;886
41.4.1;4.1 Definition;886
41.4.2;4.2 Technology;888
41.5;5 Discussion: Constructional Correctness;891
41.5.1;5.1 Structural Values;891
41.5.2;5.2 Material Values;893
41.5.3;5.3 Aesthetics;894
41.5.4;5.4 Economy;895
41.6;6 Conclusion;895
41.7;References;896
42;The Emergy of Digital Wood;898
42.1;1 Introduction;898
42.2;2 Environmentally Responsive Wood;901
42.3;3 Machine Learning Robotics;904
42.4;4 Adaptability Through Digital Scanning;905
42.4.1;4.1 MAS House;908
42.4.2;4.2 Wood Chip Barn;909
42.5;5 Conclusion;911
42.6;References;911
43;Housing Prototypes, Timber Tectonic Culture and the Digital Age;913
43.1;1 Introduction: Fast Wood in the Modern World;913
43.2;2 Tectonic Culture in Timber Architecture: From the Industrial Revolution to the Engineered Timber;915
43.3;3 A Question of Tolerance;918
43.4;4 Non-serial Timber Architecture: Three Examples of Digital Timber for Prefabricated Houses;919
43.4.1;4.1 Burst*008 House: Customisation and the Bespoke;920
43.4.2;4.2 Housing for New Orleans: We Want a Shotgun House;922
43.4.3;4.3 WikiHouse: Open-Source Customisation;925
43.5;5 Themes;927
43.5.1;5.1 Craftsmanship;928
43.5.2;5.2 Domains of Practice;929
43.5.3;5.3 Kit Home Production;931
43.5.4;5.4 Participation as Apprentice;932
43.5.5;5.5 Cross-Disciplinary Knowledge and  Simple Technology´;934
43.6;6 What´s Meant to Be Will Always Find Its Way;935
43.7;References;936
44;Performative Architecture and Wooden Structures: Overview on the Main Research Paths in Europe;938
44.1;1 Introduction: Performance-Based Process and Wood Architectures;939
44.2;2 Research Lines in the Field of Performative Wood;940
44.2.1;2.1 Wood Computation: Exploit Material Behavior as Design Agent;941
44.2.2;2.2 Wood Computation: Smart Assembly, Natural and Low-Engineered Materials;942
44.3;3 Performative Wood: Case Studies;943
44.3.1;3.1 Wood Chip Barn: Exploring the Potential of Natural Material;944
44.3.2;3.2 ICD/ITKE Research Pavilion 2011: Discover Opportunities Offered by Wood Complex Behavior;946
44.3.3;3.3 ETH, the Sequential Roof: Robotic Manufacturing and Smart Assembly;951
44.3.4;3.4 Robotic Softness: Behavioural Fabrication Process of a Woven Space;953
44.4;4 Applied Research: Fusta Robotica and Digital Urban Orchard;956
44.4.1;4.1 Fusta Robòtica: Material-Informed Design;957
44.4.2;4.2 Digital Urban Orchard: Form Follows Data Flow;960
44.5;5 Applicability of Systems to Architectural Practice;963
44.5.1;5.1 Wood Structural Systems;964
44.6;6 Performative Wood and Structural Systems: Towards an Application in Architecture;965
44.6.1;6.1 Performative Wood and Structural Systems: Bring Complexity in the Design Process;966
44.7;7 Conclusion and Outlook;968
44.8;References;969
45;Adaptive Timber Towers. An Evolutionary Prototype for the 21st Century Skyscraper;971
45.1;1 Introduction;971
45.2;2 The Skyscraper as an Adaptive Organism;974
45.3;3 The Era of Timber Towers;976
45.4;4 Evoluzione: Vision and Design Approach;979
45.4.1;4.1 Materials and Methods;980
45.4.2;4.2 Generative Model: Adaptive Wooden Skyscraper;981
45.4.3;4.3 Fitness-Based Optimization;982
45.5;5 Conclusion;985
45.6;References;986
46;Knowledge-Based Design in Industrialised House Building: A Case-Study for Prefabricated Timber Walls;988
46.1;1 Introduction;988
46.2;2 Industrialised House Building;990
46.3;3 Timber and Industrialised House Building;991
46.4;4 Knowledge Management, Timber and Industrialised House Building;993
46.4.1;4.1 Current Industry Practices;995
46.4.2;4.2 Towards Level 3 Building Information Modelling and Knowledge-Based Design;997
46.5;5 Case Study: Timber-Framed Wall;999
46.5.1;5.1 Material and Tool Selection;1000
46.5.2;5.2 Method;1001
46.5.3;5.3 Results and Discussion;1009
46.6;6 Conclusions;1012
46.7;References;1013
47;(Re)construct with Wood, The Case Study of Amatrice´s Prefabricated Bus Station Designed In BIM Environment;1016
47.1;1 Introduction;1017
47.2;2 The Design Area: Amatrice;1018
47.3;3 The Design Technology: The Wood;1021
47.4;4 The Design: A New Station for the Town of Amatrice;1023
47.5;5 The Way BIM Is Used in the Design of the Station;1029
47.6;6 The Design and BIM: The Model Applied to Other Realities;1034
47.7;7 Conclusion;1040
47.8;References;1042
48;Customizable Social Wooden Pavilions: A Workflow for the Energy, Emergy and Perception Optimization in Perugia´s Parks;1043
48.1;1 Introduction;1043
48.2;2 The Optimization Applied to a Real Case;1045
48.3;3 From Real to Virtual and Vice Versa;1047
48.4;4 Stratigraphy Optimization;1049
48.5;5 Form Finding;1052
48.6;6 Conclusions;1057
48.7;References;1059
49;Empathic Architecture: Digital Fabrication and Community Participation;1061
49.1;1 Introduction;1061
49.2;2 The Role of Architecture;1062
49.2.1;2.1 Architecture in Service of Economy, Environment, and Society;1063
49.2.2;2.2 Reacting to Unpredictable Situations with Architecture;1064
49.3;3 Veneer House Project;1066
49.3.1;3.1 Embodiment Design and Self-Built Architecture;1067
49.3.2;3.2 Logistical and Material Sustainability of Engineered Wood;1068
49.3.3;3.3 Traditional Techniques Simplified with Digital Technology;1070
49.3.4;3.4 Assemble/Disassemble; Flexibility and Adaptability;1074
49.3.5;3.5 Developing the Joint System to Accommodate Local Cladding;1075
49.3.6;3.6 Agile Architecture;1077
49.4;4 Conclusion;1082
49.5;Bibliography;1084
50;Non-orthogonal Light Timber Frame Design: Using Digital Manufacturing Technologies to Facilitate Circular Economy Architecture;1085
50.1;1 Introduction;1085
50.2;2 Background;1086
50.2.1;2.1 Platform Framing and Waste;1086
50.2.2;2.2 Fixing the Problem;1089
50.2.3;2.3 Examples of Best Practice;1090
50.3;3 Non-orthogonal Timber Frame Design Experimentation;1093
50.3.1;3.1 Conceptual Design;1094
50.3.2;3.2 Developed Design;1097
50.3.3;3.3 X-Frame 3-7;1098
50.4;4 Non-orthogonal Analysis and Critique;1099
50.4.1;4.1 Material;1100
50.4.2;4.2 CAD/CAM, Non-orthogonal Geometry and Jointing;1101
50.4.3;4.3 Material Efficiency;1105
50.4.4;4.4 Assemblage Challenges;1107
50.4.5;4.5 Aesthetics;1109
50.4.6;4.6 Structural Limitations;1109
50.5;5 Conclusion;1111
50.6;References;1112
51;Timber Plate Shell Structures: A Digital Resurgence of Traditional Joining Methods;1114
51.1;1 Plate Shell Structures in the Digital Age;1115
51.2;2 Origins of Braced Vaults;1115
51.3;3 First Corrugated Vaults;1116
51.4;4 The Digital Age: Individualized Production and New Plate Materials;1118
51.5;5 Design for Assembly: Prismatic Joints as Assembly Guides;1120
51.6;6 Double-Layered Corrugated Vaults;1123
51.7;7 Large-Scale Application;1124
51.8;8 Application to Other Types of Shells;1127
51.9;9 A Toolkit for the Design of Timber Plate Structures;1129
51.10;10 Technology for More Efficient and Sustainable Structures;1129
51.11;References;1130
52;Computationally Derived Cross-Laminated Timber Reinforcement and Construction;1131
52.1;1 Introduction;1132
52.1.1;1.1 Computational Approach for Anistropic Materials;1132
52.2;2 Benefits of Mass Timber;1133
52.2.1;2.1 Emergence of Mass Timber as a Building Material;1134
52.2.2;2.2 Material Specific Design Logic;1135
52.2.3;2.3 Composite Material Assemblage;1136
52.3;3 Control Samples and Testing;1138
52.3.1;3.1 Computational Design and Manufacturing;1139
52.3.2;3.2 Digitally Modified Panel Load Tests;1141
52.3.3;3.3 Observations;1142
52.4;4 Conclusion;1143
52.5;References;1145
53;Beech Wood for Architectural Design: Three Studies Case from an International Design Contest Terres de Hêtre®;1147
53.1;1 Introduction;1147
53.2;2 Main Characteristics of Beech Wood;1149
53.2.1;2.1 State of Art in Beech Laminated Veneer Lumber (LVL);1150
53.3;3 International Design Contest Terres de Hêtre®;1153
53.3.1;3.1 Touristic Village Les ailes du Hêtre pour l´être;1154
53.3.2;3.2 Cyclestation I Love vélo!;1157
53.3.3;3.3 Intergenerational Center La dolce vita;1159
53.4;4 Conclusion;1167
53.5;References;1177
54;Brise-Soleil House: Developing Software Tools to Enable the Integration of Design and Fabrication in Timber;1178
54.1;1 Introduction;1178
54.2;2 Context;1180
54.3;3 Project Details;1181
54.4;4 Bespoke Tool Development;1181
54.4.1;4.1 Form Development;1183
54.4.2;4.2 Design Development;1184
54.4.3;4.3 Finalization;1185
54.5;5 Fabrication and Assembly;1186
54.5.1;5.1 Documentation;1186
54.5.2;5.2 Fabrication;1187
54.5.3;5.3 The Jigsaw Effect;1188
54.5.4;5.4 Assembly;1190
54.6;6 Transport and Installation;1190
54.7;7 Discussion and Conclusions;1192
54.8;References;1194
55;Towards a 4.0 Mass Customized Wooden Housing in the Mediterranean Area: The Ecodomus Project;1195
55.1;1 Introduction: The Paradigms of Industry 4.0;1195
55.2;2 Industry 4.0 Principles for Architectural Design and Construction;1197
55.3;3 Digital Designed Housing: From the FabLabs to Industry 4.0;1200
55.4;4 Towards a 4.0 Customized Prefabricated Housing;1202
55.5;5 Explorative Research: Introducing Non-standard Prefabricated Elements with the Ecodomus Project;1205
55.5.1;5.1 Design Goals and Principles;1205
55.5.2;5.2 Bioclimatic Design;1209
55.5.3;5.3 Study Models of Assembly and Joints Details;1210
55.5.4;5.4 The Construction of the Prototype;1212
55.5.5;5.5 Final Considerations and Future Developments;1218
55.6;6 Conclusion;1219
55.7;References;1222
56;HOUSE 1 Protostructure: Enhancement of Spatial Imagination and Craftsmanship Between the Digital and the Analogical;1223
56.1;1 Introduction;1223
56.2;2 HOUSE 1, (1) Between Conceptual, Material and Digital Space;1229
56.3;3 HOUSE 1 Protostructure (2), a Tool for Enhancing Cognition, Imagination and Collaboration;1232
56.4;4 Digital Analogies: (1) Database Approach of Education in Architectural Design;1235
56.5;5 Digital Analogies: (2) an Open Source Architectural Design;1236
56.6;6 Analogic Digitals: Towards Empowerment in Open Source Systems;1240
56.7;7 Epilogue: HOUSE 1 in Versailles (500-1000 Words);1242
56.8;References;1245
57;Parametric Transfigurations and Morphological Optimizations;1247
58;KODAMA: A Polyhedron Sculpture in the Forest at Arte Sella;1248
58.1;1 Between Eastern and Western Philosophy: The Design Concept;1250
58.1.1;1.1 The Void, the Emptiness;1250
58.1.2;1.2 One Element for a Complex System;1251
58.2;2 Between Digital Parametric Design and Analogic Mockups: An Iterative Process;1253
58.3;3 The Engineering Process: Structural Design and Parametrical Modeling;1254
58.3.1;3.1 The Reasons for the Structural Analysis of a Monument;1254
58.3.2;3.2 Rules Definition for the Structural Calculations and Loads Analyses;1254
58.3.3;3.3 The Structural Analysis Process: FEM-Based Simulations, Results, and Considerations;1255
58.3.4;3.4 KODAMA in Numbers: Algorithms for the Production and Assemblage;1260
58.4;4 The Power of Experimentation: Physical Models and Analogic Mockups Towards the Final Construction Phase;1264
58.4.1;4.1 From Mockups to 1:1 Prototypes: The Assessment of the Structural Assumptions;1266
58.4.2;4.2 The Last Challenge: Assembly;1270
58.4.3;4.3 The Role of Humidity: The Power of Nature;1274
58.5;5 Conclusions;1276
58.6;References;1277
59;Wooden Byobu. From Architectural Façade to Sculpture;1280
59.1;1 Introduction;1281
59.2;2 Methodology;1286
59.3;3 The Japanese Pavilion for EXPO Milano 2015: The Wooden Diffusive Façade;1287
59.3.1;3.1 From the Architectural Concept to Parametrical and Structural Design;1288
59.3.2;3.2 Technical Details and Construction Mock-Ups;1294
59.4;4 Re-thinking Process: The Wooden Byobu;1298
59.4.1;4.1 The University Byobu;1300
59.4.2;4.2 The Urban Byobu;1300
59.4.3;4.3 The Forest Byobu;1302
59.4.4;4.4 The Museum Byobu-Kigumi Infinity;1303
59.5;5 Conclusions;1306
59.6;Bibliography;1307
60;Experimenting the Use of Wood in Contemporary Architecture: Integrating Research into Practice;1309
60.1;1 Introduction;1310
60.2;2 Contemporary Works in Wood Between Pedagogy and Profession. How to Integrate More Research into Architectural Practices;1311
60.2.1;2.1 Concrete Experience of Construction;1311
60.2.2;2.2 Research at Work;1311
60.2.3;2.3 The Results of Research Based Practice;1312
60.3;3 Research: Building Small Pavilions as a Strategy;1312
60.3.1;3.1 Approach and Practicability of Parametric Design and Digital Fabrication;1315
60.4;4 Digital Tea House Workshop;1316
60.4.1;4.1 Tea House as a Cultural Backdrop;1317
60.4.2;4.2 From Context-Neutral to Context-Aware Design;1318
60.4.3;4.3 Pavilion Nami-no-Ma (Space of Waves) ;1319
60.4.4;4.4 Pavilion 130008252010 ;1320
60.4.5;4.5 Output of the Tea House Workshop;1322
60.5;5 A Pavillon for Archeologists in Agrigento, Italy, 2013;1324
60.5.1;5.1 The Site and Its Needs;1325
60.5.2;5.2 Molecular Shelter: A Temporary Shelter for Archeologists;1325
60.6;6 Practice;1327
60.7;7 X.me System;1329
60.7.1;7.1 Social and Technological Innovation;1330
60.7.2;7.2 Info Point, Bookshop and Ticket Booth at Norman Castle in Favara, Italy, 2013;1332
60.7.3;7.3 Children Library in Paris, France, 2014;1333
60.8;8 Recreational Centre for Children and Young People in Canteleu, Normandy, France, 2016;1335
60.8.1;8.1 The Site and Its Needs;1336
60.8.2;8.2 Recreational Center;1336
60.9;9 Media Library of Quai Branly Museum, Paris, 2018;1339
60.9.1;9.1 Context and Program;1339
60.9.2;9.2 Main Concept of the New Project;1340
60.10;10 Conclusions;1343
60.11;References;1346
61;Digital Design Thinking in Architectural Education Testing Idea-Driven and Science-Driven Design Processes Towards Researching Polymer/Wood Composite Structures;1347
61.1;1 Introduction;1348
61.2;2 Qualitative Research Approach;1349
61.2.1;2.1 Idea-Driven and Science-Driven Design Processes;1350
61.2.2;2.2 Idea-Driven Design Process;1351
61.2.3;2.3 Science-Driven Design Process;1351
61.2.4;2.4 Empirical Studies-Experimental Digital Design Workshops;1351
61.2.5;2.5 Educational Setup;1352
61.2.6;2.6 Workshop in Aarhus Cones ;1354
61.2.7;2.7 Architecture Challenge 14 Polymer Folding Scapes ;1358
61.2.8;2.8 DigDesFab14?+?15 NoHOME Pavilion ;1369
61.3;3 Conclusion;1383
61.4;References;1384
62;Digital Construction of Timber Metabolism ;1386
62.1;1 Geometry and Productivity of Tectonics;1386
62.2;2 Searching for the Advantage of Tectonics in Parametric Geometry;1388
62.3;3 Rethinking Geometry and Productivity of Modern Architecture;1391
62.4;4 Japanese Traditional Timber Tectonics and  Metabolism ;1392
62.5;5 Revival of Japanese Metabolism with  Digital Wood Blocks ;1393
62.6;6 Development of Support Systems for  Digital Wood Block ;1394
62.7;7 Conclusion: Sustainable Digital Construction of Timber Metabolism ;1396
62.8;References;1399
63;Parametric Modeling of a Wooden Folding Structure;1400
63.1;1 Introduction;1400
63.2;2 Geometric Models;1402
63.3;3 Scale Models;1404
63.4;4 Structural Model;1405
63.5;5 Parametric Model;1405
63.6;6 Full-Scale Prototype;1407
63.7;7 Conclusions;1409
63.8;References;1410
64;Common-action Gardens: Performative and Parametric Prototypes;1411
64.1;1 Introduction;1412
64.2;2 Common-Action Gardens I;1418
64.2.1;2.1 Design;1418
64.2.2;2.2 Production and Application;1421
64.2.3;2.3 Performance;1421
64.3;3 Common-Action Gardens II;1422
64.3.1;3.1 Design;1422
64.3.2;3.2 Production and Application Process;1423
64.3.3;3.3 Performance;1425
64.4;4 Conclusion;1426
64.5;References;1428
65;Algorithmic Craftsmanship For Bespoke Timber Architecture;1429
65.1;1 Introduction;1429
65.2;2 Local Context and Points of Departure;1430
65.2.1;2.1 Renewable Materials in Digital Fabrication;1431
65.2.2;2.2 Industry-Connected Digital Fabrication;1431
65.2.3;2.3 Digital Material Fabrication;1431
65.3;3 Workflows in Materialisation;1432
65.3.1;3.1 Material Specific Parameters;1433
65.3.2;3.2 Cumbersome Workflows;1435
65.3.3;3.3 Setting up a Common Platform;1435
65.3.4;3.4 Part-Based Digital Workflow;1436
65.3.5;3.5 Assembly Difficulties;1436
65.4;4 Automation for Design;1438
65.4.1;4.1 Organising Chaos;1439
65.4.2;4.2 Digital Tools of Production;1439
65.4.3;4.3 Product and Service;1445
65.5;5 Conclusion;1446
65.6;References;1447
66;FracShell: From Fractal Surface to a Lattice Shell Structure;1449
66.1;1 Introduction;1449
66.2;2 FracShell: Geometric Modelling;1451
66.2.1;2.1 Fractal Geometry;1451
66.2.2;2.2 Fractal Surface: Generative and Parametric Modelling;1453
66.2.3;2.3 FracShell: Architectural Model;1456
66.3;3 FracShell: Structural Modelling;1456
66.3.1;3.1 Finite Element Modeling;1458
66.3.2;3.2 Structural Analyses;1459
66.3.3;3.3 Finding the Suitable Structural Form for Construction;1459
66.4;4 FracShell: Constructional Modelling;1461
66.4.1;4.1 Constructability: Modularity of Fractal-Based Structure;1461
66.4.2;4.2 Constructional Model;1462
66.5;5 FracShell: Physical Construction;1464
66.6;6 Conclusion;1466
66.7;References;1469
67;Developable Wooden Surfaces for Lightweight Architecture: Bio-Dune Pavilion;1470
67.1;1 Introduction;1470
67.2;2 Contextualization: Previous Experiences;1472
67.3;3 Lightweight Architecture in Wood as a Digital Fabrication Process;1472
67.4;4 Geometry in the Post-digital Era, Digital Fabrication and Construction in Wood;1476
67.5;5 Dunes as a Source of Inspiration: Bio-Mimesis, Morphogenesis, and the Project;1478
67.5.1;5.1 Developable Surfaces of the Same Slope: Algorithms of Generation of the Form;1479
67.5.2;5.2 The Constructive System;1480
67.5.3;5.3 Panelization of the Final Surface and Generation of the Cutting Files;1482
67.6;6 Results, Constructability and Lines of Further Improvement;1485
67.7;7 Conclusions;1485
67.8;References;1488
68;SMALL IS MORE. Wooden Pavilion As a Path of Research;1490
68.1;1 Introduction;1491
68.2;2 Small Is More: An Applied Method on the Design Process;1493
68.3;3 Set of Case Studies;1494
68.3.1;3.1 Akragashelter;1494
68.3.2;3.2 C-ASA;1499
68.3.3;3.3 Equilatera;1506
68.3.4;3.4 Teagloo;1512
68.3.5;3.5 Veneer House;1513
68.4;4 Conclusions;1522
68.5;References;1523
69; Correction to: Timber Plate Shell Structures: A Digital Resurgence of Traditional Joining Methods;1525
69.1;Correction to: Chapter Timber Plate Shell Structures: A Digital Resurgence of Traditional Joining Methods in: Bianconi and M. Filippucci (eds.), Digital Wood Design, Lecture Notes in Civil Engineering 24, https://doi.org/10.1007/978-3-030-03676-845;1525
mehr