Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Metal-Catalyzed Cross-Coupling Reactions and More

E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
1576 Seiten
Englisch
Wiley-VCHerschienen am21.11.20131. Auflage
This three volume book is the follow-up handbook to the bestselling volume 'Metal-Catalyzed Cross-Coupling Reactions', the definitive reference in the field. In line with the enormous developments in this area, this is not a new edition, but rather a new book in three volumes with over 50% more content. This new content includes C-H activation, shifting the focus away from typical cross-coupling reactions, while those topics and chapters found in de Meijere/Diederich's book have been updated and expanded. With its highly experienced editor team and the list of authors reading like an international Who's-Who in the field, this work will be of great interest to every synthetic chemist working in academia and industry.



Armin de Meijere became Professor of Organic Chemistry at the University of Hamburg in 1977, and took up the same chair at the University of Gottingen in 1989. Since 2006 he is emeritus professor of the University of Gottingen.
Armin de Meijere has been visiting professor at universities in the USA, Israel, Italy, France, Spain, Japan, Taiwan, as well as at the Indian Institute of Science in Bangalore. He was elected a member of the Norwegian Academy of Sciences and Letters in 1992, and in 1996 received the Alexander von Humboldt-Gay Lussac Prize of the French Ministry for Higher Education and Research. In 1997 he was elected member of the Braunschweigische Wissenschaftliche Gesellschaft, and as an Honorary Professor of the St. Petersburg State University, Russia. He was awarded the 'Adolf-von-Baeyer Medal' by the Gesellschaft Deutscher Chemiker in 2005 and received the title Doctor honoris causa by the Russian Academy of Sciences in 2009.
He is and has been editor or member of the Editorial Board for quite a number of scientific journals, periodicals and books, while his own achievements have been published in over 710 publications.


Stefan Brase was born in Kiel, Germany, in 1967 and studied chemistry in Gottingen, Bangor (UK) and Marseille (France). In 1995, he obtained his doctorate after working with Armin de Meijere at the University of Gottingen. After post-doctoral appointments at Uppsala University, Sweden (J.-E. Backvall) and The Scripps Research Institute, La Jolla, USA (K. C. Nicolaou), he began his independent research career at the RWTH Aachen associated with Dieter Enders in 1997 and finished his habilitation in 2001. He became Professor at the University of Bonn that same year. Since 2003, he is Full Professor at the University of Karlsruhe - in October 2009 renamed to the Karlsruhe Institute of Technology. Stefan Brase has published more than 300 publications and is recipient of the ORCHEM award in 2000. His research interests include methods in drug discovery (including drug delivery), combinatorial chemistry towards the synthesis of biologically active compounds, total synthesis of natural products and nanotechnology.


Martin Oestreich (born in 1971 in Pforzheim/Germany) is currently Professor of Organic Chemistry at the Technische Universitat Berlin. He received his diploma degree with Paul Knochel (Marburg, 1996) and his doctoral degree with Dieter Hoppe (Munster, 1999). After a two-year postdoctoral stint with Larry E. Overman (Irvine, 1999-2001), he completed his habilitation with Reinhard Bruckner (Freiburg, 2001-2005) and was appointed as Professor of Organic Chemistry at the Westfalische Wilhelms-Universitat Munster (2006-2011). He also held visiting positions at Cardiff University in Wales (2005) and at The Australian National University in Canberra (2010).
mehr
Verfügbare Formate
BuchGebunden
EUR550,00
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR494,99
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR494,99

Produkt

KlappentextThis three volume book is the follow-up handbook to the bestselling volume 'Metal-Catalyzed Cross-Coupling Reactions', the definitive reference in the field. In line with the enormous developments in this area, this is not a new edition, but rather a new book in three volumes with over 50% more content. This new content includes C-H activation, shifting the focus away from typical cross-coupling reactions, while those topics and chapters found in de Meijere/Diederich's book have been updated and expanded. With its highly experienced editor team and the list of authors reading like an international Who's-Who in the field, this work will be of great interest to every synthetic chemist working in academia and industry.



Armin de Meijere became Professor of Organic Chemistry at the University of Hamburg in 1977, and took up the same chair at the University of Gottingen in 1989. Since 2006 he is emeritus professor of the University of Gottingen.
Armin de Meijere has been visiting professor at universities in the USA, Israel, Italy, France, Spain, Japan, Taiwan, as well as at the Indian Institute of Science in Bangalore. He was elected a member of the Norwegian Academy of Sciences and Letters in 1992, and in 1996 received the Alexander von Humboldt-Gay Lussac Prize of the French Ministry for Higher Education and Research. In 1997 he was elected member of the Braunschweigische Wissenschaftliche Gesellschaft, and as an Honorary Professor of the St. Petersburg State University, Russia. He was awarded the 'Adolf-von-Baeyer Medal' by the Gesellschaft Deutscher Chemiker in 2005 and received the title Doctor honoris causa by the Russian Academy of Sciences in 2009.
He is and has been editor or member of the Editorial Board for quite a number of scientific journals, periodicals and books, while his own achievements have been published in over 710 publications.


Stefan Brase was born in Kiel, Germany, in 1967 and studied chemistry in Gottingen, Bangor (UK) and Marseille (France). In 1995, he obtained his doctorate after working with Armin de Meijere at the University of Gottingen. After post-doctoral appointments at Uppsala University, Sweden (J.-E. Backvall) and The Scripps Research Institute, La Jolla, USA (K. C. Nicolaou), he began his independent research career at the RWTH Aachen associated with Dieter Enders in 1997 and finished his habilitation in 2001. He became Professor at the University of Bonn that same year. Since 2003, he is Full Professor at the University of Karlsruhe - in October 2009 renamed to the Karlsruhe Institute of Technology. Stefan Brase has published more than 300 publications and is recipient of the ORCHEM award in 2000. His research interests include methods in drug discovery (including drug delivery), combinatorial chemistry towards the synthesis of biologically active compounds, total synthesis of natural products and nanotechnology.


Martin Oestreich (born in 1971 in Pforzheim/Germany) is currently Professor of Organic Chemistry at the Technische Universitat Berlin. He received his diploma degree with Paul Knochel (Marburg, 1996) and his doctoral degree with Dieter Hoppe (Munster, 1999). After a two-year postdoctoral stint with Larry E. Overman (Irvine, 1999-2001), he completed his habilitation with Reinhard Bruckner (Freiburg, 2001-2005) and was appointed as Professor of Organic Chemistry at the Westfalische Wilhelms-Universitat Munster (2006-2011). He also held visiting positions at Cardiff University in Wales (2005) and at The Australian National University in Canberra (2010).
Details
Weitere ISBN/GTIN9783527655618
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Verlag
Erscheinungsjahr2013
Erscheinungsdatum21.11.2013
Auflage1. Auflage
Seiten1576 Seiten
SpracheEnglisch
Dateigrösse17089 Kbytes
Artikel-Nr.3084209
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Metal-Catalyzed Cross-Coupling Reactions and More;5
1.1;Contents to Volume 1;7
1.2;Preface;33
1.3;List of Contributors;35
1.4;Chapter 1 Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond Forming Reactions;41
1.4.1;1.1 Mechanisms of Cross-Coupling Reactions;41
1.4.1.1;1.1.1 The Earlier Mechanistic Proposal: The Stille Reaction;42
1.4.1.2;1.1.2 The Oxidative Addition;43
1.4.1.2.1;1.1.2.1 Cis-Complexes in the Oxidative Addition;44
1.4.1.2.2;1.1.2.2 The Role of Alkene and Anionic Ligands;45
1.4.1.2.3;1.1.2.3 Cross-Couplings in the Presence of Bulky Phosphines;46
1.4.1.2.4;1.1.2.4 N-Heterocyclic Carbenes as Ligands;52
1.4.1.2.5;1.1.2.5 Palladacycles as Catalysts;53
1.4.1.2.6;1.1.2.6 Involvement of Pd(IV) in Catalytic Cycles;54
1.4.1.2.7;1.1.2.7 Oxidative Addition of Stannanes to Pd(0);56
1.4.1.3;1.1.3 The Transmetallation in the Stille Reaction;56
1.4.1.3.1;1.1.3.1 Isolation of the Transmetallation Step;56
1.4.1.3.2;1.1.3.2 Dissociative Mechanistic Proposals;58
1.4.1.3.3;1.1.3.3 Cyclic and Open Associative Transmetallation;59
1.4.1.3.4;1.1.3.4 The Copper Effect;63
1.4.1.3.5;1.1.3.5 Transmetallation in the Suzuki-Miyaura Reaction;64
1.4.1.3.6;1.1.3.6 Transmetallation in the Negishi Reaction;67
1.4.1.3.7;1.1.3.7 Transmetallation in the Hiyama Reaction;68
1.4.1.3.8;1.1.3.8 Couplings Catalyzed by Copper and Gold;70
1.4.1.3.9;1.1.3.9 Couplings Catalyzed by Iron and Cobalt;72
1.4.1.4;1.1.4 Reductive Elimination;73
1.4.2;1.2 Palladium-Catalyzed a-Arylation of Carbonyl Compounds and Nitriles;75
1.4.3;1.3 Formation of C-X (X = N, O, S) Bonds in Metal-Catalyzed Reactions;76
1.4.3.1;1.3.1 Reductive Elimination to Generate C-N, C-O, and C-S Bonds from Organopalladium(II) Complexes;79
1.4.3.2;1.3.2 Nickel- and Copper-Catalyzed Formation of C-X Bonds;84
1.4.4;1.4 Summary and Outlook;86
1.4.5;List of Abbreviations;86
1.4.6;References;87
1.5;Chapter 2 State-of-the-Art in Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Electrophiles;105
1.5.1;2.1 Introduction;106
1.5.1.1;2.1.1 Catalytic Cycle;106
1.5.1.2;2.1.2 Improvements toward More Efficient Cross-Coupling Conditions;109
1.5.1.2.1;2.1.2.1 Development of New Phosphine and NHC Ligands;109
1.5.1.2.2;2.1.2.2 Usage of Masked Boron Derivatives as Cross-Coupling Partners;110
1.5.1.2.3;2.1.2.3 Lewis Acids as Additives;112
1.5.1.2.4;2.1.2.4 Adjusting the Nucleophilicity of Organoboron Cross-Coupling Partners;113
1.5.1.2.5;2.1.2.5 Copper Salts as Additives;114
1.5.2;2.2 Advances in Cross-Coupling Reactions for the Formation of C(sp2)-C(sp2) Bonds;115
1.5.2.1;2.2.1 Background;115
1.5.2.2;2.2.2 Recent Developments in the Use of New Electrophilic Coupling Partners;115
1.5.2.2.1;2.2.2.1 Chlorides;115
1.5.2.2.2;2.2.2.2 Fluorides;119
1.5.2.2.3;2.2.2.3 Pseudohalides;122
1.5.2.3;2.2.3 Recent Developments in Organoboron Cross-Coupling Partners;132
1.5.2.3.1;2.2.3.1 Trifluoroborate Salts;133
1.5.2.3.2;2.2.3.2 N-Methyliminodiacetic Acid (MIDA) Boronates;137
1.5.2.3.3;2.2.3.3 Other Organoboron Cross-Coupling Partners;139
1.5.2.4;2.2.4 Synthesis of Enantiomerically Enriched Atropisomers;141
1.5.3;2.3 Advances in the Cross-Coupling Reactions for the Formation of C(sp3)-C(sp2) or C(sp3)-C(sp3) Bonds;143
1.5.3.1;2.3.1 Background;143
1.5.3.1.1;2.3.1.1 Stereochemistry;144
1.5.3.2;2.3.2 Cross-Couplings between Unsaturated sp2 Carbon Centers and sp3 Carbon Centers;145
1.5.3.2.1;2.3.2.1 Cross-Couplings between sp3 Alkyl Halides and sp2 Alkenyl or Aryl Boron Derivatives;145
1.5.3.2.2;2.3.2.2 Cross-Couplings between sp3 Alkyl Boron Derivatives with sp2 Alkenyl or Aryl Halides;150
1.5.3.3;2.3.3 Cross-Couplings between sp3 Carbon Centers with sp3 Carbon Centers;157
1.5.3.3.1;2.3.3.1 Cross-Couplings between Achiral Substrates;157
1.5.3.3.2;2.3.3.2 Stereoselective Cross-Coupling Reactions of sp3 Alkyl Halides with sp3 Alkylboranes;158
1.5.4;2.4 Experimental Procedures;161
1.5.4.1;2.4.1 2,6-Dimethoxy-2',6'-dimethylbiphenyl (55);161
1.5.4.2;2.4.2 4-Methoxybiphenyl (R = C(O)NEt2, R' = H, Ar = 4-methoxyphenyl);161
1.5.4.3;2.4.3 1-Phenylnaphthalene (ROH = naphthol, Ar = Ph);162
1.5.4.4;2.4.4 1-(3,5-Dimethoxyphenyl)-5-phenylpentan-3-one (Ralkyl-BF3K = 197, R1 = CH2CH2Ph, R' = 3,5-dimethoxybenzene);162
1.5.4.5;2.4.5 1-Phenyl-1-(4-acetylphenyl-ethane (ArI = 4-iodoacetophenone);162
1.5.4.6;2.4.6 Naphthalene-1,8-diamido (dan) derivative (Ar = Ph);163
1.5.4.7;2.4.7 2-Methyl-5-phenylpentyl benzyl(phenyl)carbamate (Ralkyl = Me,X = Br, R'alkyl = CH2CH2CH2Ph);163
1.5.5;2.5 Summary and Outlook;164
1.5.6;References;164
1.6;Chapter 3 Pd-Catalyzed Cross-Coupling with Organometals Containing Zn, Al, Zr, and so on - The Negishi Coupling and Its Recent Advances;173
1.6.1;3.1 Background and Discovery;174
1.6.1.1;3.1.1 Why Metals? Why Transition Metals?;174
1.6.1.2;3.1.2 Why Transition Metal-Catalyzed Organometallic Reactions?;176
1.6.2;3.2 Discovery of the Pd- or Ni-Catalyzed Cross-Coupling Reactions of Organometals Containing Zn, Al, Zr, and B;177
1.6.3;3.3 The Current Scope of the Pd- or Ni-Catalyzed Cross-coupling and Its Application to the Synthesis of Natural Products and Other Complex Organic Compounds;194
1.6.3.1;3.3.1 Cross-Coupling between Two Unsaturated (Aryl, Alkenyl, and/or Alkynyl) Groups;196
1.6.3.1.1;3.3.1.1 Aryl-Aryl Coupling;196
1.6.3.1.2;3.3.1.2 Aryl-Alkenyl and Alkenyl-Aryl Couplings;198
1.6.3.1.3;3.3.1.3 Alkenyl-Alkenyl Coupling;199
1.6.3.1.4;3.3.1.4 Pd-Catalyzed Alkynylation;231
1.6.3.2;3.3.2 Cross-Coupling Involving One Allyl, Benzyl, or Propargyl Group;237
1.6.3.2.1;3.3.2.1 1,4-Dienes via Pd-Catalyzed Alkenyl-Allyl and Allyl-Alkenyl Coupling and 1,4-Enynes by Pd-Catalyzed Alkynyl-Allyl Coupling;237
1.6.3.2.2;3.3.2.2 Benzyl-Aryl, Aryl-Benzyl Coupling;243
1.6.3.2.3;3.3.2.3 Allylbenzene Derivatives via Pd-Catalyzed Alkenyl-Benzyl Coupling and Aryl-Allyl and Allyl-Aryl Coupling;244
1.6.3.2.4;3.3.2.4 Benzylated Alkynes via Pd-Catalyzed Alkynyl-Benzyl Coupling and Aryl-Propargyl as well as Propargyl-Aryl Coupling;244
1.6.3.2.5;3.3.2.5 1,4-Diynes via Alkynyl-Propargyl Coupling;247
1.6.3.2.6;3.3.2.6 Synthesis of Natural Products Containing 1,4-Diene and Allylated Arenes by Pd-Catalyzed Allylation, Benzylation, and Propargylation;248
1.6.3.3;3.3.3 Cross-Coupling between Two Allyl, Benzyl, and/or Propargyl Groups;250
1.6.3.3.1;3.3.3.1 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Cross-Couplings with Allyl, Benzyl, Propargyl Electrophiles;250
1.6.3.3.2;3.3.3.2 1,5-Dienes and 1,5-Enynes via Pd-Catalyzed Homoallyl-Alkenyl Coupling and Homopropargyl-Alkenyl Coupling;252
1.6.3.3.3;3.3.3.3 Bibenzyls, Homoallylarenes, 1,5-Dienes, Homopropargylarenes, and 1,5-Enynes via Pd-Catalyzed Negishi Coupling;254
1.6.3.4;3.3.4 Cross-Coupling Involving Alkylmetals and/or Alkyl Electrophiles Other Than Those Containing Allyl, Benzyl, and/or Propargyl Groups;256
1.6.3.4.1;3.3.4.1 Pd-Catalyzed Alkyl-Alkyl Coupling;259
1.6.3.4.2;3.3.4.2 Ni-Catalyzed Alkyl-Alkyl Coupling;261
1.6.3.4.3;3.3.4.3 Catalytic Asymmetric Cross-Coupling Reactions with Secondary Alkyl Halides;263
1.6.3.5;3.3.5 Pd-Catalyzed Acylation, Cyanation, and a-Substitution of Enolates and Related Derivatives;267
1.6.3.5.1;3.3.5.1 Pd-Catalyzed Acylation;267
1.6.3.5.2;3.3.5.2 Pd-Catalyzed Cyanation;272
1.6.3.5.3;3.3.5.3 Pd-Catalyzed a-Substitution of Enolates and Related Derivatives;273
1.6.4;3.4 Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA) ZACA-Pd- or Cu-Catalyzed Cross-Coupling Sequential Processes as a General Route to Enantiomerically Enriched Chiral Organic Compounds;283
1.6.4.1;3.4.1 Zirconium-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA Reaction);283
1.6.4.1.1;3.4.1.1 Historical and Mechanistic Background of Carbometallation of Alkenes and Alkynes with Alkylzirconocene Derivatives;284
1.6.4.1.2;3.4.1.2 Catalytic Asymmetric Carbometallation of Alkenes Proceeding via Dzhemilev Ethylmagnesiations;286
1.6.4.2;3.4.2 Current Summary of Development and Application of the ZACA Reaction and Conclusion;289
1.6.4.2.1;3.4.2.1 ZACA-Pd-Catalyzed Cross-Coupling Sequential Processes for the Synthesis of Deoxypolypropionates and Related Compounds;289
1.6.4.2.2;3.4.2.2 ZACA-Lipase-Catalyzed Acetylation-Pd- or Cu-Catalyzed Cross-Coupling Synergy to Chiral Organic Compounds;293
1.6.5;3.5 Representative Experimental Procedures;300
1.6.5.1;3.5.1 (2Z,4S)-5-(tert-Butyldimethylsilyloxy)-2-phenyl-4-methyl-2-pentene;300
1.6.5.2;3.5.2 (2Z,4E,6E)-Ethyl Trideca-2,4,6-trienoate;300
1.6.5.3;3.5.3 (2Z)-2-Allyl-3,7-dimethylocta-2,6-dien-1-ol;300
1.6.5.4;3.5.4 Ethyl 2-(4-Phenylbuta-1,3-diynyl)benzoate;301
1.6.5.4.1;3.5.4.1 (E)-1-Chloro-4-phenyl-1-buten-3-yne;301
1.6.5.4.2;3.5.4.2 Ethyl 2-(4-Phenylbuta-1,3-diynyl)benzoate;301
1.6.5.5;3.5.5 O-tert-Butyldiphenylsilyl-protected (3S,5E)-3,9-Dimethyl-6-isopropyl-5,8-decadien-1-ol;301
1.6.5.5.1;3.5.5.1 (1E)-1-Iodo-2-isopropyl-5-methyl-1,4-hexadiene;301
1.6.5.5.2;3.5.5.2 O-tert-Butyldiphenylsilyl-protected (3S,5E)-3,9-Dimethyl-6-isopropyl-5,8-decadien-1-ol;302
1.6.5.6;3.5.6 1,3-Diphenylpropyne;302
1.6.5.7;3.5.7 (4S)-4-Phenyl-1-pentene;303
1.6.5.8;3.5.8 (R)-2-Phenylpropan-1-ol;303
1.6.6;Acknowledgments;303
1.6.7;References;304
1.7;Chapter 4 Carbon-Carbon Bond Forming Reactions Mediated by Organozinc Reagents;319
1.7.1;4.1 Introduction;319
1.7.2;4.2 Methods of Preparation of Zinc Organometallics;320
1.7.2.1;4.2.1 Direct Insertion of Zn(0) into Organohalides;320
1.7.2.2;4.2.2 Transmetallation Reactions;322
1.7.2.2.1;4.2.2.1 Transmetallation Reactions with Main-Group and Transition Metal Organometallics;322
1.7.2.2.2;4.2.2.2 Boron-Zinc Exchange Reactions;325
1.7.2.3;4.2.3 Direct Zincation Reactions;327
1.7.2.4;4.2.4 Halogen-Zinc Exchange Reactions;328
1.7.2.5;4.2.5 Hydro- and Carbozincation Reactions;330
1.7.3;4.3 Uncatalyzed Cross-Coupling Reactions of Organozinc Reagents;331
1.7.4;4.4 Copper-Catalyzed Cross-Coupling Reactions of Organozinc Reagents;333
1.7.4.1;4.4.1 Cross-Coupling with C(sp)- or C(sp2)-Electrophiles;333
1.7.4.2;4.4.2 Cross-Coupling Reactions with C(sp3)-Electrophiles;335
1.7.5;4.5 Transition-Metal-Catalyzed Cross-Coupling Reactions of Organozinc Reagents;336
1.7.5.1;4.5.1 Cross-Coupling Reactions of C(sp2)-Organozinc Reagents;337
1.7.5.1.1;4.5.1.1 Palladium-Catalyzed Cross-Coupling Reactions;337
1.7.5.1.2;4.5.1.2 Nickel-Catalyzed Cross-Coupling Reactions;351
1.7.5.1.3;4.5.1.3 Rhodium-Catalyzed Cross-Coupling Reactions;355
1.7.5.1.4;4.5.1.4 Cobalt-Catalyzed Cross-Coupling Reactions;356
1.7.5.1.5;4.5.1.5 Iron-Catalyzed Cross-Coupling Reactions;357
1.7.5.2;4.5.2 Cross-Coupling Reactions of Alkynylzinc Reagents;358
1.7.5.2.1;4.5.2.1 Cross-Coupling with C(sp2)-Electrophiles;358
1.7.5.2.2;4.5.2.2 Cross-Coupling with C(sp3)-Electrophiles;360
1.7.5.3;4.5.3 Cross-Coupling Reactions of C(sp3)-Organozinc Reagents;361
1.7.5.3.1;4.5.3.1 Palladium-Catalyzed Cross-Coupling Reactions;362
1.7.5.3.2;4.5.3.2 Nickel-Catalyzed Cross-Coupling Reactions;372
1.7.5.3.3;4.5.3.3 Platinum-Catalyzed Cross-Coupling Reactions;382
1.7.5.3.4;4.5.3.4 Iron-Catalyzed Cross-Coupling Reactions;383
1.7.5.3.5;4.5.3.5 Cobalt-Catalyzed Cross-Coupling Reactions;383
1.7.5.3.6;4.5.3.6 Rhodium-Catalyzed Cross-Coupling Reactions;384
1.7.6;4.6 Conclusions;385
1.7.7;4.7 Experimental Procedures;385
1.7.7.1;4.7.1 3-Ethoxycarbonylphenylzinc Iodide (7);385
1.7.7.2;4.7.2 6-Carboethoxy-3,5-dimethylpyrimidinyl-5-zinc Chloride (27);386
1.7.7.3;4.7.3 1-Hexenylmethylzinc (37);386
1.7.7.4;4.7.4 Di(5-carboethoxy-5-hexenyl)zinc (39);386
1.7.7.5;4.7.5 Di-(5-bromo-2,4-di(carboethoxy)phenyl)zinc (60);387
1.7.7.6;4.7.6 Cyclohexylisopropylzinc (80);387
1.7.7.7;4.7.7 10-Nitro-9-phenyldecyl Acetate (126);387
1.7.7.8;4.7.8 2-Cyano-2',4',6'-triisopropylbiphenyl (140);388
1.7.7.9;4.7.9 (2R,3S)-2-(3,4-Dimethoxyphenyl)-8-mesityl-5,7-dimethoxychroman- 3-ol (155);388
1.7.7.10;4.7.10 2-(2-(Thiophen-2-yl)ethynyl)pyridine (173);389
1.7.7.11;4.7.11 6,6-Diethoxy-2-phenyl-1-hexene (231);389
1.7.7.12;4.7.12 Ethyl 4'-Methoxy-biphenyl-3-carboxylate (244);389
1.7.7.13;4.7.13 Ethyl 4-(Furan-2-yl)benzoate (261);390
1.7.7.14;4.7.14 Trimethyl((R)-3-p-tolylhept-1-ynyl)silane (268);390
1.7.7.15;4.7.15 4-[2-(4-Methoxyphenyl)pyrimidin-4-yl]benzonitrile (286);390
1.7.7.16;4.7.16 3-Cycloheptyl-2-methylprop-2-ene (292);391
1.7.7.17;4.7.17 Ethyl 4-(Phenylethynyl)benzoate (301);391
1.7.7.18;4.7.18 tert-Butyl((cis-3-(4-((tert-butyldimethylsilyl)oxy)but-1-yn-1-yl) cyclohexyl)oxy)dimethylsilane (333);391
1.7.7.19;4.7.19 cis-tert-Butyl 2-(4-Cyanophenyl)-4-phenylpiperidine-1-carboxylate (352);392
1.7.7.20;4.7.20 1-(((E)-Dodec-4-enyloxy)methyl)benzene (364);392
1.7.7.21;4.7.21 Ethyl 6-Phenylhex-5-ynoate (379);392
1.7.7.22;4.7.22 8-Oxo-8-phenyloctyl Pivalate (403);393
1.7.7.23;4.7.23 7-Phenylheptanoic Acid Diethylamide (441);393
1.7.7.24;4.7.24 Ethyl 4-Isopropylbenzoate (456);393
1.7.8;Acknowledgments;394
1.7.9;List of Abbreviations;394
1.7.10;References;395
1.8;Chapter 5 Carbon-Carbon-Bond-Forming Reactions Mediated by Organomagnesium Reagents;405
1.8.1;5.1 Introduction;405
1.8.2;5.2 Methods of Preparation of Magnesium Organometallics;406
1.8.2.1;5.2.1 Direct Insertion of Magnesium;406
1.8.2.2;5.2.2 Halogen-Magnesium Exchange Reactions;406
1.8.2.3;5.2.3 Direct Magnesiation Reactions;408
1.8.3;5.3 Transition-Metal-Catalyzed Cross-Coupling Reactions of Organomagnesium Reagents;410
1.8.3.1;5.3.1 Cross-Coupling of C(sp2)-Organomagnesium Reagents;412
1.8.3.1.1;5.3.1.1 Nickel-Catalyzed Cross-Coupling Reactions;412
1.8.3.1.2;5.3.1.2 Palladium-Catalyzed Cross-Coupling Reactions;415
1.8.3.1.3;5.3.1.3 Iron-Catalyzed Cross-Coupling Reactions;419
1.8.3.1.4;5.3.1.4 Cobalt-Catalyzed Cross-Coupling Reactions;423
1.8.3.1.5;5.3.1.5 Manganese-Catalyzed Cross-Coupling Reactions;423
1.8.3.1.6;5.3.1.6 Rhodium-Catalyzed Cross-Coupling Reactions;423
1.8.3.2;5.3.2 Cross-Coupling Reactions of C(sp)-Organomagnesium Reagents;424
1.8.3.2.1;5.3.2.1 Palladium-Catalyzed Cross-Coupling Reactions;425
1.8.3.2.2;5.3.2.2 Cobalt-Catalyzed Cross-Coupling Reactions;426
1.8.3.2.3;5.3.2.3 Manganese-Catalyzed Oxidative Cross-Coupling Reactions;428
1.8.3.2.4;5.3.2.4 Nickel-Catalyzed Cross-Coupling Reactions;429
1.8.3.3;5.3.3 Cross-Coupling Reactions of C(sp3)-Organomagnesium Reagents;430
1.8.3.3.1;5.3.3.1 Nickel-Catalyzed Cross-Coupling Reactions;431
1.8.3.3.2;5.3.3.2 Iron-Catalyzed Cross-Coupling Reactions;438
1.8.3.3.3;5.3.3.3 Palladium-Catalyzed Cross-Coupling Reactions;444
1.8.3.3.4;5.3.3.4 Copper-Catalyzed Cross-Coupling Reactions;446
1.8.3.3.5;5.3.3.5 Cobalt-Catalyzed Reactions;448
1.8.3.3.6;5.3.3.6 Manganese-Catalyzed Cross-Coupling Reactions;450
1.8.3.3.7;5.3.3.7 Silver-Catalyzed Cross-Coupling Reactions;450
1.8.4;5.4 Conclusions;451
1.8.5;5.5 Experimental Procedures;451
1.8.5.1;5.5.1 Ethyl 3'-Bromo-4'-[(tert-butoxycarbonyl)oxy]biphenyl-4- carboxylate (3);451
1.8.5.2;5.5.2 (2-Bromocyclopent-1-en-1-yl)(cyclohexyl)methanol (13);452
1.8.5.3;5.5.3 Diethyl 4-Bromo-6-iodoisophthalate (29);452
1.8.5.4;5.5.4 4-Methoxybiphenyl (41);453
1.8.5.5;5.5.5 2-Phenyl-(2'-phenyl)-4-methylquinoline (69);453
1.8.5.6;5.5.6 9-Methylenepentadec-7-yne (144);454
1.8.5.7;5.5.7 Trimethyl(3-p-tolylprop-1-ynyl)silane (152);454
1.8.5.8;5.5.8 1-(1-Heptynyl)-4-methoxybenzene (155);454
1.8.5.9;5.5.9 N,N-5-Trimethylnaphthalen-1-amine (174);455
1.8.5.10;5.5.10 N,N-Diethyldecanamide (200);455
1.8.5.11;5.5.11 (E)-12-Acetoxydodec-5-ene (210);455
1.8.5.12;5.5.12 2-tert-Butyl-4-tert-pentyl-6-phenyl-1,3,5-triazine (254);456
1.8.6;Acknowledgments;456
1.8.7;List of Abbreviations;456
1.8.8;References;457
1.9;Chapter 6 Organotin Reagents in Cross-Coupling Reactions;463
1.9.1;6.1 Introduction;463
1.9.2;6.2 Mechanism and Methodology;464
1.9.2.1;6.2.1 Mechanism;464
1.9.2.2;6.2.2 Methodology;468
1.9.2.2.1;6.2.2.1 Reaction Medium;469
1.9.2.2.2;6.2.2.2 New Ligands, Catalysts, and Additives;469
1.9.2.2.3;6.2.2.3 New Organic and Organotin Coupling Partners;474
1.9.2.2.4;6.2.2.4 Polymer-Supported Stille Chemistry;475
1.9.2.2.5;6.2.2.5 Other Advances in Methodology;476
1.9.3;6.3 Natural Product Synthesis;483
1.9.3.1;6.3.1 Intramolecular Couplings;484
1.9.3.2;6.3.2 Intermolecular Couplings;486
1.9.3.2.1;6.3.2.1 Vinyl-Vinyl Couplings;486
1.9.3.2.2;6.3.2.2 Other Couplings Involving Vinyltins;488
1.9.3.2.3;6.3.2.3 Couplings of Heterocyclic Organotins;489
1.9.3.2.4;6.3.2.4 Other Intermolecular Couplings;489
1.9.4;6.4 Organic Synthesis;490
1.9.4.1;6.4.1 Vinyl-Vinyl Couplings;490
1.9.4.2;6.4.2 Other Couplings Involving Vinyltins;491
1.9.4.3;6.4.3 Couplings of Aryltins;494
1.9.4.4;6.4.4 Couplings of Heterocyclic Organotins;495
1.9.4.5;6.4.5 Couplings of Alkynyltins;496
1.9.4.6;6.4.6 Couplings of Miscellaneous Organotins;497
1.9.5;6.5 Polymer Chemistry;497
1.9.5.1;6.5.1 Materials Based on Polythiophene (or Polyselenophene) Backbones;498
1.9.5.2;6.5.2 Materials Based on Thiophene in Combination with Other Repeating Units;499
1.9.5.3;6.5.3 Materials Based on Pyrrole and Furan;500
1.9.5.4;6.5.4 Polyphenylenevinylene and Related Materials;500
1.9.5.5;6.5.5 Other Materials;501
1.9.6;6.6 Inorganic Synthesis;501
1.9.6.1;6.6.1 Couplings of Vinyltins;501
1.9.6.2;6.6.2 Couplings of Aryltins;502
1.9.6.3;6.6.3 Couplings of Heterocyclic Organotins;502
1.9.6.4;6.6.4 Couplings of Alkynyltins;502
1.9.7;6.7 Conclusions;503
1.9.8;6.8 Experimental Procedures;504
1.9.8.1;6.8.1 Spirocyclization by Grigg et al.;504
1.9.8.2;6.8.2 4,4-Dicyano-2,7-dimethyl-5-phenylocta-1,7-diene (R=Me);504
1.9.8.3;6.8.3 4,4'-Bis[5-ethynyl(5'-methyl-2,2'-bipyridyl)]-1,1'-biphenyl;504
1.9.8.4;6.8.4 Pentacarbonyl[1-dimethylamino-7-trimethylsilyl-2,4,6-heptatriynylidene]tungsten;505
1.9.9;List of Abbreviations;505
1.9.10;References;505
1.10;Chapter 7 Organosilicon Compounds in Cross-Coupling Reactions;515
1.10.1;7.1 Introduction;515
1.10.1.1;7.1.1 Background of Silicon-Based Cross-Coupling Reactions;515
1.10.1.2;7.1.2 Discovery and Early Development Work;516
1.10.2;7.2 Modern Organosilicon Cross-Coupling;519
1.10.2.1;7.2.1 Organosiletanes;519
1.10.2.2;7.2.2 Organosilanols;522
1.10.2.2.1;7.2.2.1 Tetrabutylammonium Fluoride (TBAF)-Promoted Coupling;523
1.10.2.2.2;7.2.2.2 Non-Fluoride-Promoted Coupling;528
1.10.2.3;7.2.3 Organosiloxanes;534
1.10.2.4;7.2.4 Organosilyl Ethers;537
1.10.2.5;7.2.5 Organopyridyl- and Organothiophenylsilanes;546
1.10.2.6;7.2.6 Organosilyl Hydrides;551
1.10.3;7.3 Mechanistic Studies in Silicon-Based Cross-Coupling Reactions;553
1.10.3.1;7.3.1 The Pentacoordinate Silicon;553
1.10.3.2;7.3.2 Substituent Steric Effects;555
1.10.3.3;7.3.3 Convergence of Mechanistic Pathways;557
1.10.3.4;7.3.4 Kinetic Analysis and Mechanistic Implications;559
1.10.4;7.4 Applications to Total Synthesis;564
1.10.5;7.5 Summary and Outlook;565
1.10.6;7.6 Experimental Procedures;565
1.10.6.1;7.6.1 TBAF-Promoted Palladium-Catalyzed Cross-Coupling of Alkenylsilanes with Aryl or Alkenyl Halides. ((1E)-1-Heptenylbenzene (E)-14);565
1.10.6.2;7.6.2 Palladium-Catalyzed Cross-Coupling of (4-Methoxyphenyl)- dimethylsilanol with 4-Substituted Aryl Iodides. 4-Carbethoxy-4'-methoxybiphenyl (65);566
1.10.6.3;7.6.3 One-Pot Sequential Hydrosilylation/Cross-Coupling Reaction. (E)-5-(4-Methoxyphenyl)-4-penten-1-ol (96);566
1.10.6.4;7.6.4 Palladium-Catalyzed Cross-Coupling of Phenyltrimethoxysilane with Aryl Iodides. 4-Acetylbiphenyl;567
1.10.6.5;7.6.5 One-Pot Sequential Mizoroki-Heck/Cross-Coupling Reaction. (E)-4-[2-(4-Acetylphenyl)-1-butylethenyl]benzoic Acid Ethyl Ester (171);567
1.10.7;List of Abbreviations;567
1.10.8;References;568
1.11;Chapter 8 Cross-Coupling of Organyl Halides with Alkenes - The Heck Reaction;573
1.11.1;8.1 Introduction;573
1.11.2;8.2 Principles;574
1.11.2.1;8.2.1 The Mechanism;574
1.11.2.2;8.2.2 The Catalysts;576
1.11.2.3;8.2.3 The Alkenes;581
1.11.2.4;8.2.4 Effects of Bases, Ligands, and Additives;584
1.11.2.5;8.2.5 The Leaving Groups;591
1.11.2.6;8.2.6 Structural Requirements in Intramolecular Cyclizations;596
1.11.3;8.3 Cascade Reactions and Multiple Couplings;597
1.11.3.1;8.3.1 Heck Cascades Involving C(sp2) Centers;598
1.11.3.2;8.3.2 Heck Reaction Cascades Involving C(sp2) and C(sp) Centers;601
1.11.3.3;8.3.3 Cascades Consisting of Heck and Subsequent Cycloaddition or Electrocyclization Reactions;602
1.11.3.3.1;8.3.3.1 Heck-Diels-Alder Cascades;602
1.11.3.3.2;8.3.3.2 Heck-6p-Electrocyclization Cascades;604
1.11.3.4;8.3.4 Heck Reactions Combined with Other Cross-Coupling Processes;606
1.11.3.5;8.3.5 Palladium-Catalyzed Reactions Involving Nucleophilic Substrates;610
1.11.3.6;8.3.6 Heck-Aldol and Heck-Michael Cascades;617
1.11.3.7;8.3.7 Heck-Type Processes Involving C-H Activation;619
1.11.3.8;8.3.8 Hydroarylations and Hydroalkenylations - Reductive Heck Reactions;627
1.11.3.9;8.3.9 Heck Reactions with Subsequent Incorporation of Carbon Monoxide;630
1.11.3.10;8.3.10 The Heck Coupling in Combination with Other Reactions;631
1.11.3.11;8.3.11 Multiple Heck Couplings;632
1.11.4;8.4 Related Palladium-Catalyzed Reactions;638
1.11.5;8.5 Enantioselective Heck-Type Reactions;641
1.11.6;8.6 Syntheses of Heterocycles, Natural Products, and Other Biologically Active Compounds Applying Heck Reactions;647
1.11.7;8.7 Carbopalladation Reactions in Solid-Phase Syntheses;660
1.11.8;8.8 The Heck Reaction in Fine Chemicals Syntheses;667
1.11.9;8.9 Conclusions;668
1.11.10;8.10 Experimental Procedures;669
1.11.10.1;8.10.1 Dipotassium (E)-4,4'-Diphenylstilbene-4'',4'''-disulfonate (Stilbene I) (12-SO3K);669
1.11.10.2;8.10.2 trans-4-Acetylstilbene (480);670
1.11.10.3;8.10.3 Methyl 3-(E)-{2-[2-(E)-Methoxycarbonylethenyl]cyclopent-1-enyl} acrylate (482b);671
1.11.10.4;8.10.4 Diethyl 4'-Chloro-4'-methoxycarbonylspiro[cyclopropane-1,3'-bicyclo-[4.3.0]non-1'(6')-ene]-8',8'-dicarboxylate~(76);672
1.11.10.5;8.10.5 (R)-2-Cyclohexenyl-2,5-dihydrofuran (R)-406;672
1.11.10.6;8.10.6 6-Methoxy-1-(S)-ethenyl-1,2,3,4-tetrahydronaphthalene (26);673
1.11.10.7;8.10.7 10,11-Benzo-13-oxatricyclo[7.4.1.01,6]tetradeca-3,7-diene-6-carbonitrile (362);673
1.11.10.8;8.10.8 Hexakismethanofullerene Derivative 294;674
1.11.11;Acknowledgments;675
1.11.12;List of Abbreviations;675
1.11.13;References;677
1.12;Chapter 9 Cross-Coupling Reactions to sp Carbon Atoms;705
1.12.1;9.1 Introduction;705
1.12.2;9.2 Alkynylcopper Reagents;706
1.12.2.1;9.2.1 The Stephens-Castro Reaction;706
1.12.2.2;9.2.2 The Sonogashira Reaction;708
1.12.2.2.1;9.2.2.1 Mechanism;708
1.12.2.2.2;9.2.2.2 The Sonogashira Catalysts;711
1.12.2.2.3;9.2.2.3 Amine Bases;724
1.12.2.2.4;9.2.2.4 Solvents and Additives;726
1.12.2.2.5;9.2.2.5 Protecting Groups and In situ Protodesilylation/Alkynylation;727
1.12.2.2.6;9.2.2.6 Recent Extensions to the Sonogashira Cross-Coupling Protocol;729
1.12.2.2.7;9.2.2.7 Applications of the Sonogashira Reaction;739
1.12.2.3;9.2.3 The Cadiot-Chodkiewicz Coupling;742
1.12.3;9.3 Alkynyltin Reagents;746
1.12.3.1;9.3.1 The Stille Coupling;746
1.12.3.2;9.3.2 Organotriflates in the Stille Coupling;748
1.12.3.3;9.3.3 Recent Advancements of the Stille Reaction;753
1.12.3.4;9.3.4 Applications of the Stille Reaction;756
1.12.4;9.4 Alkynylzinc Reagents;757
1.12.4.1;9.4.1 The Negishi Protocol;757
1.12.4.2;9.4.2 Applications of the Negishi Cross-Coupling Reaction;761
1.12.5;9.5 Alkynylboron Reagents;764
1.12.5.1;9.5.1 The Suzuki-Miyaura Coupling;764
1.12.5.2;9.5.2 Alkynylboron Coupling Partners;765
1.12.5.3;9.5.3 Application of the Suzuki-Miyaura Reaction;770
1.12.6;9.6 Alkynylsilicon Reagents;771
1.12.6.1;9.6.1 Alkynylsilane Cross-Couplings - The Sila-Sonogashira-Hagihara Reaction;771
1.12.6.2;9.6.2 One-Pot Twofold Cross-Couplings;775
1.12.7;9.7 Alkynylmagnesium Reagents - The Kumada-Corriu Reaction;776
1.12.8;9.8 Other Alkynylmetals;779
1.12.8.1;9.8.1 Alkynylaluminum Reagents;779
1.12.8.2;9.8.2 Alkynylindium Reagents;781
1.12.8.3;9.8.3 Alkynylgermanium, Alkynylsilver, and Alkynylmanganese Reagents;783
1.12.9;9.9 Concluding Remarks;785
1.12.10;9.10 Experimental Procedures;786
1.12.10.1;9.10.1 The Castro-Stephens Reductive Ene-Yne Macrocyclization to 7;786
1.12.10.2;9.10.2 One-Pot Sonogashira Coupling through In situ TMS Deprotection to 43;786
1.12.10.3;9.10.3 Sonogashira Coupling to the Triphenylene Derivative 66;787
1.12.10.4;9.10.4 The Cadiot-Chodkiewicz Active Template Synthesis of the [2]Rotaxane 74;787
1.12.10.5;9.10.5 Pd-Free Stille Coupling to the Enyne 85;787
1.12.10.6;9.10.6 The Suzuki Coupling to Alkynylated Naphthalene-Tricarbonylchromium Complexes 117;788
1.12.11;Acknowledgments;788
1.12.12;List of Abbreviations;788
1.12.13;References;790
1.13;Chapter 10 Carbometallation Reactions;803
1.13.1;10.1 Introduction;803
1.13.2;10.2 Carbometallation of Alkenes;804
1.13.2.1;10.2.1 Intermolecular Reactions;804
1.13.2.2;10.2.2 Intramolecular Reactions;838
1.13.3;10.3 Carbometallation of Alkynes;856
1.13.3.1;10.3.1 Intermolecular Reactions;856
1.13.3.2;10.3.2 Intramolecular Reactions;898
1.13.4;10.4 Carbometallation Reactions of Allenes;904
1.13.5;10.5 Conclusions;906
1.13.6;10.6 Experimental Procedures;907
1.13.6.1;10.6.1 Tertiary Alcohols 40 by Alkylation/Arylation Reactions of Alkenylcarbamates and Quenching with t-BuONO;907
1.13.6.2;10.6.2 General Procedure for the Preparation of Alkylidenecyclopropane Derivatives 83;907
1.13.6.3;10.6.3 trans,cis-2-Methyl-1-phenyl-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a] isoquinoline~184;908
1.13.6.4;10.6.4 General Procedure for the One-Pot Formation of the Aldol Surrogate 380;908
1.13.6.5;10.6.5 Synthesis of Tetrasubstituted 1,3-Dienes 442;908
1.13.7;References;909
1.14;Chapter 11 Palladium-Catalyzed 1,4-Additions to Conjugated Dienes;915
1.14.1;11.1 Introduction;915
1.14.2;11.2 Palladium(0)-Catalyzed Reactions;916
1.14.2.1;11.2.1 Addition of H-Nu;916
1.14.2.1.1;11.2.1.1 1,4-Hydrosilylation;917
1.14.2.1.2;11.2.1.2 1,4-Hydrostannation;918
1.14.2.1.3;11.2.1.3 1,4-Hydroamination;919
1.14.2.1.4;11.2.1.4 Addition of Active Methylene Compounds;919
1.14.2.1.5;11.2.1.5 1,4-Hydrosulfonation;920
1.14.2.1.6;11.2.1.6 1,4-Hydrosulfenation and 1,4-Hydrothiocarbonylation;921
1.14.2.1.7;11.2.1.7 1,4-Hydroboration;921
1.14.2.1.8;11.2.1.8 1,4-Hydrocyanation;922
1.14.2.2;11.2.2 1,4-Coupling with a Carbanion Equivalent and Another Nucleophile;922
1.14.2.2.1;11.2.2.1 1,4-Carboamination;923
1.14.2.2.2;11.2.2.2 1,4-Addition of a Carbon Nucleophile (Aryl or Vinyl) and a Stabilized Carbanion;925
1.14.2.2.3;11.2.2.3 1,4-Addition of Carbon and Oxygen;926
1.14.2.2.4;11.2.2.4 1,4-Carbosilylation;928
1.14.3;11.3 Palladium(II)-Catalyzed Reactions;930
1.14.3.1;11.3.1 1,4-Addition of Two Nucleophiles;930
1.14.3.1.1;11.3.1.1 1,4-Diacyloxylation;931
1.14.3.1.2;11.3.1.2 1,4-Haloacyloxylation;941
1.14.3.1.3;11.3.1.3 1,4-Addition of an Alkoxide and Another Oxygen Function or a Halide;949
1.14.3.1.4;11.3.1.4 1,4-Oxyamination and 1,4-Chloroamination;953
1.14.3.1.5;11.3.1.5 Intramolecular 1,4-Additions with C-C Bond Formation;955
1.14.4;References;959
1.15;Chapter 12 Cross-Coupling Reactions via p-Allylmetal Intermediates;965
1.15.1;12.1 Introduction;965
1.15.2;12.2 Palladium-Catalyzed Allylic Alkylations;966
1.15.2.1;12.2.1 Mechanistic Aspects;966
1.15.2.1.1;12.2.1.1 Formation and Reactions of p-Allylpalladium Complexes;966
1.15.2.1.2;12.2.1.2 Isomerizations of p-Allylpalladium Complexes;967
1.15.2.1.3;12.2.1.3 Regioselectivity;969
1.15.2.1.4;12.2.1.4 Stereochemical Aspects;972
1.15.2.2;12.2.2 Allylic Substrates for Allylic Alkylations;982
1.15.2.2.1;12.2.2.1 Allylic Alkylations under Basic Conditions;982
1.15.2.2.2;12.2.2.2 Allylic Alkylations under Neutral Conditions;985
1.15.2.3;12.2.3 Nucleophiles for Allylic Alkylations;986
1.15.2.3.1;12.2.3.1 Reactions with Stabilized, ``Soft'' Nucleophiles;986
1.15.2.3.2;12.2.3.2 Reactions with Enolates and Their Derivatives;988
1.15.2.3.3;12.2.3.3 Reactions with Hard Nucleophiles;993
1.15.2.4;12.2.4 Carbonylations;994
1.15.2.5;12.2.5 Umpolung of p-Allylpalladium Complexes;995
1.15.3;12.3 Allylic Alkylations with Other Transition Metals;999
1.15.3.1;12.3.1 Iridium;999
1.15.3.2;12.3.2 Iron;1004
1.15.3.3;12.3.3 Molybdenum;1006
1.15.3.4;12.3.4 Nickel;1009
1.15.3.5;12.3.5 Platinum;1011
1.15.3.6;12.3.6 Rhodium;1012
1.15.3.7;12.3.7 Ruthenium;1017
1.15.3.8;12.3.8 Tungsten;1021
1.15.4;12.4 Experimental Procedures;1023
1.15.4.1;12.4.1 Palladium-Catalyzed Asymmetric Tsuji Allylation of Allyl Enol Carbonates;1023
1.15.4.2;12.4.2 Iridium-Catalyzed Asymmetric Allylic Alkylation;1023
1.15.4.3;12.4.3 Ruthenium-Catalyzed Allylation of 1,3-Diketones with Allyl Alcohol;1023
1.15.4.4;12.4.4 Rhodium-Catalyzed Allylic Alkylation of Chelated Enolates;1023
1.15.5;List of Abbreviations;1024
1.15.6;References;1025
1.16;Chapter 13 Palladium-Catalyzed Aromatic Carbon-Nitrogen Bond Formation;1035
1.16.1;13.1 Introduction;1035
1.16.2;13.2 Mechanistic Considerations;1036
1.16.3;13.3 General Considerations;1040
1.16.3.1;13.3.1 Choice of Precatalyst;1040
1.16.3.2;13.3.2 Choice of Ligand;1042
1.16.3.3;13.3.3 Choice of Base;1044
1.16.3.4;13.3.4 Choice of Solvent;1044
1.16.3.5;13.3.5 Choice of Temperature;1045
1.16.4;13.4 Arylation;1045
1.16.4.1;13.4.1 Arylation of Amines;1045
1.16.4.1.1;13.4.1.1 Ammonia Equivalents;1045
1.16.4.1.2;13.4.1.2 Primary Aliphatic Amines;1052
1.16.4.1.3;13.4.1.3 Cyclic Secondary Aliphatic Amines;1060
1.16.4.1.4;13.4.1.4 Acyclic Secondary Aliphatic Amines;1065
1.16.4.1.5;13.4.1.5 Arylation of Aniline Derivatives;1070
1.16.4.2;13.4.2 Arylation of Amide, Urethane, Urea, and Sulfonic Acid Amide Derivatives;1077
1.16.4.3;13.4.3 Arylation of Heterocycles;1083
1.16.4.4;13.4.4 Intramolecular Amination;1087
1.16.5;13.5 Amination with C-H Bond Activation;1091
1.16.6;13.6 Troubleshooting;1094
1.16.7;13.7 Conclusions;1095
1.16.8;13.8 Experimental Procedures;1096
1.16.8.1;13.8.1 Synthesis of Anilines from Aryl Halides and Ammonia;1096
1.16.8.2;13.8.2 Coupling of Primary Aliphatic Amines;1096
1.16.8.3;13.8.3 Coupling of Cyclic Secondary Aliphatic Amines;1097
1.16.8.4;13.8.4 Coupling of Acyclic Secondary Aliphatic Amines;1097
1.16.8.5;13.8.5 Coupling of Diarylanilines;1098
1.16.8.6;13.8.6 Arylation of Amides;1099
1.16.8.7;13.8.7 Amination with C-H Bond Activation;1099
1.16.9;References;1100
1.17;Chapter 14 The Directed Ortho Metallation (DoM)-Cross-Coupling Nexus. Synthetic Methodology for the Formation of Aryl-Aryl and Aryl-Heteroatom-Aryl Bonds;1107
1.17.1;14.1 Introduction;1107
1.17.2;14.2 Content of this Review;1110
1.17.3;14.3 Synthetic Methodology Derived from the DoM-Cross-Coupling Nexus;1110
1.17.3.1;14.3.1 DoM-C-C Cross-Coupling. Methodology for Biaryls and Heterobiaryls;1110
1.17.3.1.1;14.3.1.1 Li . Boron Transmetallation. The Suzuki-Miyaura Cross-Coupling Reaction;1111
1.17.3.1.2;14.3.1.2 Li . Magnesium Transmetallation. The Kumada-Corriu Cross-Coupling;1124
1.17.3.1.3;14.3.1.3 Li . Sn Transmetallation. The Migita-Stille Cross-Coupling;1130
1.17.3.1.4;14.3.1.4 Li . Zn Transmetallation. The Negishi Cross-Coupling;1133
1.17.3.2;14.3.2 Comparison of Named C-C Cross-Coupling Reactions in the DoM Context;1135
1.17.3.2.1;14.3.2.1 Directed Remote Metallation (DreM) Connections;1137
1.17.3.3;14.3.3 DoM-C-N, C-O, and C-S Cross-Couplings. Methodology for Ar-Z-Ar Systems;1138
1.17.3.3.1;14.3.3.1 DreM Connection;1140
1.17.4;14.4 Application in Synthesis;1141
1.17.4.1;14.4.1 Synthesis of Bioactive Molecules;1141
1.17.4.1.1;14.4.1.1 DoM-Cross-Coupling Tactics Involving Ar-Ar Bond Formation;1141
1.17.4.1.2;14.4.1.2 DoM-Cross-Coupling Tactics Involving Ar-Z-Ar Bond Formation;1146
1.17.4.2;14.4.2 Synthesis of Natural Products;1146
1.17.4.2.1;14.4.2.1 The Suzuki-Miyaura Cross-Coupling;1146
1.17.4.2.2;14.4.2.2 The Migita-Stille Cross-Coupling;1150
1.17.4.2.3;14.4.2.3 The Negishi Cross-Coupling;1155
1.17.4.3;14.4.3 Synthesis of Organic Materials;1156
1.17.5;14.5 Conclusions and Prognosis;1159
1.17.5.1;14.5.1 Synthetic Methodology;1159
1.17.5.2;14.5.2 Synthetic Applications;1160
1.17.5.3;14.5.3 Prognosis;1160
1.17.6;14.6 Selected Experimental Procedures;1161
1.17.6.1;14.6.1 The DoM-Suzuki-Miyaura Cross-Coupling for the Preparation of Benzo[c][2,7]naphthyridinone 161;1161
1.17.6.2;14.6.2 One-Pot DoM-Suzuki-Miyaura Cross-Coupling to Pyr-Ar Systems;1162
1.17.6.3;14.6.3 DoM-Kumada-Corriu Cross-Coupling for the Preparation of N,N-Diethyl-2-trimethylsilyl-3-phenylbenzamide;1162
1.17.6.4;14.6.4 DoM-Migita-Stille Cross-Coupling for the Preparation of 3,3''-Dimethoxy-2,2' : 5'2''-terthiophene 228;1162
1.17.6.5;14.6.5 DoM-Negishi Cross-Coupling in the Preparation of 5,5'-Diallyl-2,2-bis(methoxymethoxy)biphenyl 216;1163
1.17.6.6;14.6.6 DoM-Ullmann Cross-Coupling. Synthesis of Ar-X-Ar' (X=O, N, S) under Modified Ullmann Reaction Conditions;1164
1.17.6.7;14.6.7 Typical Buchwald-Hartwig Cross-Coupling Procedure. Synthesis of N,N-Diethyl-N-phenylanthranilamide;1164
1.17.7;Acknowledgments;1164
1.17.8;List of Abbreviations;1164
1.17.9;References;1165
1.18;Chapter 15 Transition-Metal-Catalyzed Hydroamination Reactions;1175
1.18.1;15.1 Introduction;1175
1.18.2;15.2 Early Transition Metal Catalysts;1176
1.18.2.1;15.2.1 Introduction;1176
1.18.2.2;15.2.2 Catalysts for Alkyne Hydroamination;1179
1.18.2.3;15.2.3 Catalysts for Allene Hydroamination;1185
1.18.2.4;15.2.4 Catalysts for Alkene Hydroamination;1186
1.18.2.4.1;15.2.4.1 Expanded Substrate Scope;1188
1.18.2.4.2;15.2.4.2 Secondary Amine Substrates;1191
1.18.2.4.3;15.2.4.3 Mechanistic Insights;1192
1.18.2.4.4;15.2.4.4 Room Temperature Reactivity;1193
1.18.2.5;15.2.5 Catalysts for Asymmetric Alkene Hydroamination;1196
1.18.2.6;15.2.6 Summary;1199
1.18.3;15.3 Late Transition Metal Catalysts;1200
1.18.3.1;15.3.1 Introduction;1200
1.18.3.1.1;15.3.1.1 Nucleophilic Attack on Neutral p-Complexes;1201
1.18.3.1.2;15.3.1.2 Nucleophilic Attack on Allylic Complexes;1202
1.18.3.1.3;15.3.1.3 Insertion Route for C-N Bond Formation;1203
1.18.3.2;15.3.2 Hydroamination of Ethylene;1205
1.18.3.3;15.3.3 Hydroamination with Ammonia;1209
1.18.3.4;15.3.4 Catalysts for Alkyne Substrates;1211
1.18.3.5;15.3.5 Catalysts for Allene Substrates;1223
1.18.3.6;15.3.6 Catalysts for Alkene Substrates;1229
1.18.3.6.1;15.3.6.1 Intermolecular Alkene Hydroamination;1237
1.18.3.6.2;15.3.6.2 Intramolecular Alkene Hydroamination;1240
1.18.3.7;15.3.7 Enantioselective Hydroamination;1247
1.18.3.8;15.3.8 Mechanistic Investigations;1256
1.18.4;15.4 Hydroamination in Synthesis;1262
1.18.4.1;15.4.1 One-Pot and Tandem Catalysis;1262
1.18.4.2;15.4.2 Pyrrole Synthesis;1265
1.18.4.3;15.4.3 Indoles;1270
1.18.4.4;15.4.4 N-Heterocycle Synthesis;1273
1.18.4.5;15.4.5 Total Synthesis;1280
1.18.5;15.5 Summary and Future Directions;1284
1.18.6;15.6 Example Experimental Procedures;1285
1.18.6.1;15.6.1 Alkene Hydroamination with Ti(NMe2)4;1285
1.18.6.2;15.6.2 Alkene hydroamination with [Ir(COD)Cl]2;1285
1.18.6.3;15.6.3 Allene Hydroamination with Zirconium Ureate Complex (5);1286
1.18.6.4;15.6.4 Allene Hydroamination with (dppf)PtCl2;1286
1.18.6.5;15.6.5 Asymmetric Hydroamination with Chiral Zwitterionic Zr Complex 19;1286
1.18.6.6;15.6.6 Asymmetric Hydroamination with a Chiral Rh Complex Using Ligand 64;1287
1.18.6.7;15.6.7 Ethylene Hydroamination;1287
1.18.6.8;15.6.8 Hydroamination with Ammonia;1288
1.18.6.9;15.6.9 Alkyne Hydroamination with Au-CAAC Complex;1288
1.18.7;References;1288
1.19;Chapter 16 Oxidative Functionalization of Alkenes;1299
1.19.1;16.1 Introduction;1299
1.19.2;16.2 Palladium-Catalyzed Nucleopalladation: General Features;1299
1.19.3;16.3 Wacker-Type Reactions;1300
1.19.4;16.4 Other Oxygenation Reactions Involving Wacker-Type Chemistry;1305
1.19.4.1;16.4.1 Amine-Derived Nucleopalladation;1306
1.19.4.1.1;16.4.1.1 Experimental Procedure;1308
1.19.4.2;16.4.2 Domino Nucleopalladation/C-C Coupling;1311
1.19.4.2.1;16.4.2.1 Synthesis of Intermediate 51;1313
1.19.4.3;16.4.3 Nucleopalladation Followed by C-H Bond Functionalization;1317
1.19.4.3.1;16.4.3.1 Experimental Procedure for Catalytic Enantioselective Carboamination;1324
1.19.5;16.5 Metal-Catalyzed Difunctionalization of Alkenes;1326
1.19.5.1;16.5.1 Intramolecular Processes;1328
1.19.5.1.1;16.5.1.1 Tethered Amination Reactions;1328
1.19.5.1.2;16.5.1.2 Copper-Assisted Nucleophilic Palladium Displacement;1328
1.19.5.1.3;16.5.1.3 Palladium(IV) Catalysis;1328
1.19.5.1.4;16.5.1.4 Aminohalogenation;1329
1.19.5.1.5;16.5.1.5 Aminooxygenation;1331
1.19.5.1.6;16.5.1.6 Diamination;1335
1.19.5.1.7;16.5.1.7 Chlorohydrin Synthesis and Vicinal Dibromination;1338
1.19.5.1.8;16.5.1.8 Dioxygenation;1341
1.19.5.1.9;16.5.1.9 Aminooxygenation;1344
1.19.5.1.10;16.5.1.10 Aminofluorination;1345
1.19.5.1.11;16.5.1.11 Diamination of Alkenes;1345
1.19.6;16.6 Summary;1349
1.19.7;References;1349
1.20;Chapter 17 Biaryl Synthesis through Metal-Catalyzed C-H Arylation;1355
1.20.1;17.1 Introduction;1355
1.20.2;17.2 C-H/C-X Coupling;1356
1.20.2.1;17.2.1 Early Contributions;1356
1.20.2.2;17.2.2 With Directing Group (Chelation-Assisted Arylation);1358
1.20.2.2.1;17.2.2.1 Early Contributions of C-H/C-X Coupling with Directing Group;1358
1.20.2.2.2;17.2.2.2 Various Directing Groups;1359
1.20.2.2.3;17.2.2.3 Applications to Synthesis;1363
1.20.2.3;17.2.3 Without Directing Group;1363
1.20.2.3.1;17.2.3.1 Simple Arenes;1363
1.20.2.3.2;17.2.3.2 Application to Synthesis;1367
1.20.2.4;17.2.4 C-H/C-X Coupling of Various Heteroarenes and Aryl Halides;1369
1.20.2.4.1;17.2.4.1 Indoles and Pyrroles - Electron-Rich Heteroarenes;1369
1.20.2.4.2;17.2.4.2 Thiophenes and Furans - Electron-Rich Heteroarenes;1374
1.20.2.4.3;17.2.4.3 1,3-Azoles and Derivatives - Electron-Neutral Heteroarenes;1380
1.20.2.4.4;17.2.4.4 Azines and Related Electron-Deficient Heteroarenes;1386
1.20.2.4.5;17.2.4.5 Miscellaneous Azoles and Azines;1388
1.20.3;17.3 ``Special'' Coupling Partners: Phenol Derivatives and Arylcarbonyl Compounds;1388
1.20.3.1;17.3.1 C-H/C-O Coupling;1388
1.20.3.2;17.3.2 Decarboxylative/Decarbonylative C-H Coupling;1393
1.20.4;17.4 C-H/C-M Coupling;1396
1.20.4.1;17.4.1 With Directing Group;1396
1.20.4.2;17.4.2 No Directing Groups;1399
1.20.5;17.5 C-H/C-H Coupling;1402
1.20.5.1;17.5.1 Homocoupling;1402
1.20.5.1.1;17.5.1.1 Simple Arenes;1402
1.20.5.1.2;17.5.1.2 Directing-Group-Assisted C-H/C-H Homocoupling of Arenes;1403
1.20.5.1.3;17.5.1.3 C-H/C-H Homocoupling of Heteroarenes;1403
1.20.5.2;17.5.2 C-H/C-H Cross-Coupling;1405
1.20.5.2.1;17.5.2.1 Coupling of Simple Arenes;1405
1.20.5.2.2;17.5.2.2 Directing-Group-Assisted C-H/C-H Cross-Coupling of Arenes;1406
1.20.5.2.3;17.5.2.3 C-H/C-H Cross-Coupling of Heteroarenes and Arenes;1408
1.20.5.2.4;17.5.2.4 Oxidative C-H/C-H Cross-Coupling of Heteroarenes;1411
1.20.6;17.6 Enantioselective C-H Coupling;1413
1.20.7;17.7 Experimental Procedures;1414
1.20.7.1;17.7.1 C-H/C-X Coupling;1414
1.20.7.1.1;17.7.1.1 4-Phenyltoluene (36);1414
1.20.7.2;17.7.2 C-H/C-O Coupling;1414
1.20.7.2.1;17.7.2.1 2-(Naphthalen-2-yl)benzoxazole;1414
1.20.7.3;17.7.3 C-H/C-M Coupling;1415
1.20.7.3.1;17.7.3.1 10,21-Di-tert-butylhexabenzo[a,c,fg,j,l,o,p]tetracene (144);1415
1.20.7.4;17.7.4 C-H/C-H Coupling;1415
1.20.7.4.1;17.7.4.1 1-(5-Methoxy-3-phenyl-1H-indol-1-yl)ethanone (162);1415
1.20.7.5;17.7.5 Enantioselective C-H Coupling;1416
1.20.7.5.1;17.7.5.1 (S)-2,3-Dimethyl-4-(2-methylnaphthalen-1-yl)thiophene (177);1416
1.20.8;References;1417
1.21;Chapter 18 C-H Bond Alkenylation;1429
1.21.1;18.1 Introduction;1429
1.21.2;18.2 Oxidative C-H Bond Alkenylation with Alkenes;1430
1.21.2.1;18.2.1 The Fujiwara-Moritani-Type Reaction;1430
1.21.2.2;18.2.2 Chelate-Directed Alkenylation (Ortho Alkenylation);1432
1.21.2.3;18.2.3 Regioselective Alkenylation of Heteroarenes;1443
1.21.3;18.3 Direct C-H Bond Alkenylation with Alkenyl Halides and Alkenylmetal Reagents;1453
1.21.4;18.4 C-H Bond Addition across Alkynes;1455
1.21.5;18.5 Experimental Procedures;1462
1.21.5.1;18.5.1 Butyl 5,6-Dihydro-5-(4'-chlorophenylsulfonyl)phenanthridine-6-acetate;1462
1.21.5.2;18.5.2 (E)-3-Methoxystilbene;1462
1.21.5.3;18.5.3 Benzyl 2-(4,4-Dimethyl-5-oxo-1-(perfluorophenyl)pyrrolidin-2-yl) acetate;1462
1.21.5.4;18.5.4 Butyl (E)-3-(1-Methylindol-2-yl)-2-propenoate;1463
1.21.5.5;18.5.5 (E)-2-(4-Octen-4-yl)-5-phenyl-1,3,4-oxadiazole;1463
1.21.6;18.6 Summary;1463
1.21.7;References;1464
1.22;Chapter 19 C-H Bond Alkylation (Including Hydroarylation of Alkenes);1467
1.22.1;19.1 Introduction;1467
1.22.2;19.2 C-H Alkylation with Electrophilic Reagents;1468
1.22.2.1;19.2.1 Palladium-Catalyzed C-H Alkylation;1469
1.22.2.1.1;19.2.1.1 Directed Alkylations;1469
1.22.2.1.2;19.2.1.2 Alkylation by the Catellani Reaction;1472
1.22.2.1.3;19.2.1.3 Intramolecular Alkylation;1476
1.22.2.1.4;19.2.1.4 Intermolecular Alkylation;1478
1.22.2.2;19.2.2 Ruthenium-Catalyzed C-H Alkylation;1485
1.22.2.3;19.2.3 C-H Alkylation Catalyzed by First-Row Transition Metals;1487
1.22.3;19.3 C-H Alkylation with Alkylmetal Reagents;1491
1.22.3.1;19.3.1 Palladium-Catalyzed C-H Alkylation;1491
1.22.3.2;19.3.2 Cobalt-Catalyzed C-H Alkylation;1495
1.22.4;19.4 Hydroarylation and Hydroalkenylation of Alkenes;1496
1.22.4.1;19.4.1 Pioneering Studies;1496
1.22.4.2;19.4.2 Ruthenium-Catalyzed (Murai's) Reactions;1498
1.22.4.2.1;19.4.2.1 Method Development;1498
1.22.4.2.2;19.4.2.2 Mechanistic Studies;1504
1.22.4.3;19.4.3 Rhodium-Catalyzed Reactions;1507
1.22.4.3.1;19.4.3.1 Directed Alkylation;1507
1.22.4.3.2;19.4.3.2 Nondirected Alkylation;1517
1.22.4.4;19.4.4 Reactions Catalyzed by Other Transition Metals;1520
1.22.5;19.5 Experimental Procedures;1524
1.22.5.1;19.5.1 Palladium-Catalyzed ortho-Trifluoromethylation of Arenes;1524
1.22.5.2;19.5.2 Palladium-Catalyzed Direct C-2 Alkylation of Free N-H Indoles;1525
1.22.5.3;19.5.3 Palladium-Catalyzed Direct Benzylation of Heteroarenes;1525
1.22.5.4;19.5.4 Iron-Catalyzed Alkylation of (Hetero)arenes;1526
1.22.5.5;19.5.5 C(sp3)-H Alkylation with Boronic Acids Directed by O-Methyl Hydroxamic Acids;1526
1.22.5.6;19.5.6 In Situ Generation of a Tunable Catalyst;1526
1.22.5.7;19.5.7 Intermolecular Alkylation of Heteroarenes;1527
1.22.5.8;19.5.8 Nickel-Catalyzed C-4 Alkylation of Pyridines;1527
1.22.6;19.6 Summary and Outlook;1527
1.22.7;References;1528
1.23;Index;1535
mehr

Autor

Armin de Meijere became Professor of Organic Chemistry at the University of Hamburg in 1977, and took up the same chair at the University of Göttingen in 1989. Since 2006 he is emeritus professor of the University of Göttingen.
Armin de Meijere has been visiting professor at universities in the USA, Israel, Italy, France, Spain, Japan, Taiwan, as well as at the Indian Institute of Science in Bangalore. He was elected a member of the Norwegian Academy of Sciences and Letters in 1992, and in 1996 received the Alexander von Humboldt-Gay Lussac Prize of the French Ministry for Higher Education and Research. In 1997 he was elected member of the Braunschweigische Wissenschaftliche Gesellschaft, and as an Honorary Professor of the St. Petersburg State University, Russia. He was awarded the "Adolf-von-Baeyer Medal" by the Gesellschaft Deutscher Chemiker in 2005 and received the title Doctor honoris causa by the Russian Academy of Sciences in 2009.
He is and has been editor or member of the Editorial Board for quite a number of scientific journals, periodicals and books, while his own achievements have been published in over 710 publications.


Stefan Bräse was born in Kiel, Germany, in 1967 and studied chemistry in Göttingen, Bangor (UK) and Marseille (France). In 1995, he obtained his doctorate after working with Armin de Meijere at the University of Göttingen. After post-doctoral appointments at Uppsala University, Sweden (J.-E. Bäckvall) and The Scripps Research Institute, La Jolla, USA (K. C. Nicolaou), he began his independent research career at the RWTH Aachen associated with Dieter Enders in 1997 and finished his habilitation in 2001. He became Professor at the University of Bonn that same year. Since 2003, he is Full Professor at the University of Karlsruhe - in October 2009 renamed to the Karlsruhe Institute of Technology. Stefan Bräse has published more than 300 publications and is recipient of the ORCHEM award in 2000. His research interests include methods in drug discovery (including drug delivery), combinatorial chemistry towards the synthesis of biologically active compounds, total synthesis of natural products and nanotechnology.


Martin Oestreich (born in 1971 in Pforzheim/Germany) is currently Professor of Organic Chemistry at the Technische Universität Berlin. He received his diploma degree with Paul Knochel (Marburg, 1996) and his doctoral degree with Dieter Hoppe (Münster, 1999). After a two-year postdoctoral stint with Larry E. Overman (Irvine, 1999-2001), he completed his habilitation with Reinhard Brückner (Freiburg, 2001-2005) and was appointed as Professor of Organic Chemistry at the Westfälische Wilhelms-Universität Münster (2006-2011). He also held visiting positions at Cardiff University in Wales (2005) and at The Australian National University in Canberra (2010).