Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Space Electronic Reconnaissance

E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
384 Seiten
Englisch
John Wiley & Sonserschienen am10.04.20141. Auflage
Presents the theories and applications of determining the position of an object in space through the use of satellites

As the importance of space reconnaissance technology intensifies, more and more countries are investing money in building their own space reconnaissance satellites. Due to the secrecy and sensitivity of the operations, it is hard to find published papers and journals on the topic outside of military and governmental agencies.  This book aims to fill the gap by presenting the various applications and basic principles of a very modern technology. The space electronic reconnaissance system in mono/multi-satellite platforms is a critical feature which can be used for detection, localization, tracking or identification of the various kinds of signal sources from radar, communication or navigation systems.

Localization technology in space electronic reconnaissance uses single or multiple satellite receivers which receive signals from radar, communication and navigation emitters in the ground, ocean and space to specify the location of emitter.   The methods, principles and technologies of different space electronic reconnaissance localization systems are introduced in this book, as are their performances, and the various methods are explained and analysed.  Digital simulations illustrate the results.
Presents the theories and applications of determining the position of an object in space through the use of satellites
Introduces methods, principles and technologies of localization and tracking in the space electronic reconnaissance system, the localization algorithm and error in satellite system and near space platform system, and the tracking algorithm and error in single satellite-to-satellite tracking system
Provides the fundamentals, the mathematics, the limitations, the measurements, and systems, of localization with emphasis on defence industry applications

Highly relevant for Engineers working in avionics, radar, communication, navigation and electronic warfare.

Chapters include:- the introduction of space electronic reconnaissance localization technology, knowledge about the satellite orbit and basic terminology of passive localization, single satellite geolocation technology based on direction finding, three-satellite geolocation technology based on time difference of arrival (TDOA), two-satellite geolocation technology based on TDOA and frequency difference of arrival (FDOA), the single satellite localization technology based on kinematics theory, localization principles of near-space platform electronic reconnaissance systems, the orbit determination of single satellite-to-satellite tracking using bearings only(BO) information, the orbit determination of single satellite-to-satellite tracking using bearings and frequency information, the orbit determination of single satellite-to-satellite tracking using frequency only(FO) information. Each chapter ends with a problem and solution section, some using Matlab code.


Fucheng Guo, National University of Defense Technology, P.R. China

Yun Fan, National University of Defense Technology, P.R. China

Yiyu Zhou, National University of Defense Technology, P.R. China

Caigen Zhou, National University of Defense Technology, P.R. China

Qiang Li, National University of Defense Technology, P.R. China
mehr
Verfügbare Formate
BuchGebunden
EUR168,50
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR123,99
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR123,99

Produkt

KlappentextPresents the theories and applications of determining the position of an object in space through the use of satellites

As the importance of space reconnaissance technology intensifies, more and more countries are investing money in building their own space reconnaissance satellites. Due to the secrecy and sensitivity of the operations, it is hard to find published papers and journals on the topic outside of military and governmental agencies.  This book aims to fill the gap by presenting the various applications and basic principles of a very modern technology. The space electronic reconnaissance system in mono/multi-satellite platforms is a critical feature which can be used for detection, localization, tracking or identification of the various kinds of signal sources from radar, communication or navigation systems.

Localization technology in space electronic reconnaissance uses single or multiple satellite receivers which receive signals from radar, communication and navigation emitters in the ground, ocean and space to specify the location of emitter.   The methods, principles and technologies of different space electronic reconnaissance localization systems are introduced in this book, as are their performances, and the various methods are explained and analysed.  Digital simulations illustrate the results.
Presents the theories and applications of determining the position of an object in space through the use of satellites
Introduces methods, principles and technologies of localization and tracking in the space electronic reconnaissance system, the localization algorithm and error in satellite system and near space platform system, and the tracking algorithm and error in single satellite-to-satellite tracking system
Provides the fundamentals, the mathematics, the limitations, the measurements, and systems, of localization with emphasis on defence industry applications

Highly relevant for Engineers working in avionics, radar, communication, navigation and electronic warfare.

Chapters include:- the introduction of space electronic reconnaissance localization technology, knowledge about the satellite orbit and basic terminology of passive localization, single satellite geolocation technology based on direction finding, three-satellite geolocation technology based on time difference of arrival (TDOA), two-satellite geolocation technology based on TDOA and frequency difference of arrival (FDOA), the single satellite localization technology based on kinematics theory, localization principles of near-space platform electronic reconnaissance systems, the orbit determination of single satellite-to-satellite tracking using bearings only(BO) information, the orbit determination of single satellite-to-satellite tracking using bearings and frequency information, the orbit determination of single satellite-to-satellite tracking using frequency only(FO) information. Each chapter ends with a problem and solution section, some using Matlab code.


Fucheng Guo, National University of Defense Technology, P.R. China

Yun Fan, National University of Defense Technology, P.R. China

Yiyu Zhou, National University of Defense Technology, P.R. China

Caigen Zhou, National University of Defense Technology, P.R. China

Qiang Li, National University of Defense Technology, P.R. China
Details
Weitere ISBN/GTIN9781118542217
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Erscheinungsjahr2014
Erscheinungsdatum10.04.2014
Auflage1. Auflage
Seiten384 Seiten
SpracheEnglisch
Dateigrösse14927 Kbytes
Artikel-Nr.3087195
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Cover;1
2;Title Page;5
3;Copyright;6
4;Contents;9
5;Preface;15
6;Acknowledgments;17
7;Acronyms;19
8;Chapter 1 Introduction to Space Electronic Reconnaissance Geolocation;23
8.1;1.1 Introduction;23
8.2;1.2 An Overview of Space Electronic Reconnaissance Geolocation Technology;25
8.2.1;1.2.1 Geolocation of an Emitter on the Earth;25
8.2.2;1.2.2 Tracking of an Emitter on a Satellite;30
8.2.3;1.2.3 Geolocation by Near-Space Platforms;31
8.3;1.3 Structure of a Typical SER System;31
8.4;References;33
9;Chapter 2 Fundamentals of Satellite Orbit and Geolocation;35
9.1;2.1 An Introduction to the Satellite and Its Orbit;35
9.1.1;2.1.1 Kepler's Three Laws;35
9.1.2;2.1.2 Classification of Satellite Orbits;37
9.2;2.2 Orbit Parameters and State of Satellite;40
9.2.1;2.2.1 Orbit Elements of a Satellite;40
9.2.2;2.2.2 Definition of Several Arguments of Perigee and Their Correlations;42
9.3;2.3 Definition of Coordinate Systems and Their Transformations;43
9.3.1;2.3.1 Definition of Coordinate Systems;43
9.3.2;2.3.2 Transformation between Coordinate Systems;47
9.4;2.4 Spherical Model of the Earth for Geolocation;49
9.4.1;2.4.1 Regular Spherical Model for Geolocation;49
9.4.2;2.4.2 Ellipsoid Model of the Earth;49
9.5;2.5 Coverage Area of a Satellite;52
9.5.1;2.5.1 Approximate Calculation Method for the Coverage Area;52
9.5.2;2.5.2 Examples of Calculation of the Coverage Area;53
9.5.3;2.5.3 Side Reconnaissance Coverage Area;55
9.6;2.6 Fundamentals of Geolocation;55
9.6.1;2.6.1 Spatial Geolocation Plane;56
9.6.2;2.6.2 Spatial Line of Position (LOP);56
9.7;2.7 Measurement Index of Geolocation Errors;60
9.7.1;2.7.1 General Definition of Error;60
9.7.2;2.7.2 Geometrical Dilution of Precision (GDOP);62
9.7.3;2.7.3 Graphical Representation of the Geolocation Error;62
9.7.4;2.7.4 Spherical Error Probability (SEP) and Circular Error Probability (CEP);63
9.8;2.8 Observability Analysis of Geolocation;66
9.9;References;67
10;Chapter 3 Single-Satellite Geolocation System Based on Direction Finding;69
10.1;3.1 Direction Finding Techniques;69
10.1.1;3.1.1 Amplitude Comparison DF Technique;70
10.1.2;3.1.2 Interferometer DF Technique;71
10.1.3;3.1.3 Array-Based DF Technique;77
10.1.4;3.1.4 Other DF Techniques;79
10.2;3.2 Single-Satellite LOS Geolocation Method and Analysis;79
10.2.1;3.2.1 Model of LOS Geolocation;79
10.2.2;3.2.2 Solution of LOS Geolocation;81
10.2.3;3.2.3 CRLB of the LOS Geolocation Error;82
10.2.4;3.2.4 Simulation and Analysis of the LOS Geolocation Error;84
10.2.5;3.2.5 Geometric Distribution of the LOS Geolocation Error;85
10.3;3.3 Multitimes Statistic LOS Geolocation;86
10.3.1;3.3.1 Single-Satellite Multitimes Triangulation;87
10.3.2;3.3.2 Average for Single-Satellite Multitimes Geolocation;88
10.3.3;3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation;89
10.3.4;3.3.4 Simulation of Single-Satellite LOS Geolocation;89
10.4;3.4 Single HEO Satellite LOS Geolocation;95
10.4.1;3.4.1 Analysis of Single GEO Satellite LOS Geolocation;95
10.4.2;3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation;96
10.5;References;99
11;Chapter 4 Multiple Satellites Geolocation Based on TDOA Measurement;101
11.1;4.1 Three-Satellite Geolocation Based on a Regular Sphere;102
11.1.1;4.1.1 Three-Satellite Geolocation Solution Method;102
11.1.2;4.1.2 Multisatellite TDOA Geolocation Method;104
11.1.3;4.1.3 CRLB of a Multisatellite TDOA Geolocation Error;107
11.1.4;4.1.4 Osculation Error of the Spherical Earth Model;108
11.2;4.2 Three-Satellite Geolocation Based on the WGS-84 Earth Surface Model;110
11.2.1;4.2.1 Analytical Method;111
11.2.2;4.2.2 Spherical Iteration Method;114
11.2.3;4.2.3 Newton Iteration Method;116
11.2.4;4.2.4 Performance Comparison among the Three Solution Methods;118
11.2.5;4.2.5 Altitude Input Location Algorithm;122
11.3;4.3 Ambiguity and No-Solution Problems of Geolocation;124
11.3.1;4.3.1 Ambiguity Problem of Geolocation;124
11.3.2;4.3.2 No-Solution Problem of Geolocation;128
11.4;4.4 Error Analysis of Three-Satellite Geolocation;131
11.4.1;4.4.1 Analysis of the Random Geolocation Error;131
11.4.2;4.4.2 Analysis of Bias Caused by Altitude Assumption;134
11.4.3;4.4.3 Influence of Change of the Constellation Geometric Configuration on GDOP;136
11.5;4.5 Calibration Method of the Three-Satellite TDOA Geolocation System;139
11.5.1;4.5.1 Four-Station Calibration Method and Analysis;139
11.5.2;4.5.2 Three-Station Calibration Method;147
11.6;References;152
12;Chapter 5 Dual-Satellite Geolocation Based on TDOA and FDOA;155
12.1;5.1 Introduction of TDOA-FDOA Geolocation by a Dual-Satellite;155
12.1.1;5.1.1 Explanation of Dual-Satellite Geolocation Theory;155
12.1.2;5.1.2 Structure of Dual-Satellite TDOA-FDOA Geolocation System;156
12.2;5.2 Dual LEO Satellite TDOA-FDOA Geolocation Method;158
12.2.1;5.2.1 Geolocation Model;158
12.2.2;5.2.2 Solution Method of Algebraic Analysis;160
12.2.3;5.2.3 Approximate Analytical Method for Same-Orbit Satellites;163
12.2.4;5.2.4 Method for Eliminating an Ambiguous Geolocation Point;165
12.3;5.3 Error Analysis for TDOA-FDOA Geolocation;166
12.3.1;5.3.1 Analytic Method for the Geolocation Error;166
12.3.2;5.3.2 GDOP of the Dual LEO Satellite Geolocation Error;168
12.3.3;5.3.3 Analysis of Various Factors Influencing GDOP;173
12.4;5.4 Dual HEO Satellite TDOA-FDOA Geolocation;174
12.4.1;5.4.1 Dual Geosynchronous Orbit Satellites TDOA-FDOA Geolocation;174
12.4.2;5.4.2 Calibration Method Based on Reference Sources;177
12.4.3;5.4.3 Calibration Method Using Multiple Reference Sources;181
12.4.4;5.4.4 Flow of Calibration and Geolocation;186
12.5;5.5 Method of Measuring TDOA and FDOA;187
12.5.1;5.5.1 The Cross-Ambiguity Function;187
12.5.2;5.5.2 Theoretical Analysis on the TDOA-FDOA Measurement Performance;188
12.5.3;5.5.3 Segment Correlation Accumulation Method for CAF Computation;190
12.5.4;5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency;194
12.6;References;196
13;Chapter 6 Single-Satellite Geolocation System Based on the Kinematic Principle;199
13.1;6.1 Single-Satellite Geolocation Model;199
13.2;6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation;201
13.2.1;6.2.1 Frequency-Only Based Geolocation Method;201
13.2.2;6.2.2 Analysis of the Geolocation Error;202
13.2.3;6.2.3 Analysis of the Frequency-Only Based Geolocation Error;203
13.3;6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only;205
13.3.1;6.3.1 Model of Geolocation by the Frequency Changing Rate Only;205
13.3.2;6.3.2 CRLB of the Geolocation Error;207
13.3.3;6.3.3 Geolocation Simulation;208
13.4;6.4 Single-Satellite Single-Antenna TOA-Only Geolocation;208
13.4.1;6.4.1 Model and Method of TOA-Only Geolocation;208
13.4.2;6.4.2 Analysis of the Geolocation Error;211
13.4.3;6.4.3 Geolocation Simulation;214
13.5;6.5 Single-Satellite Interferometer Phase Rate of Changing-Only Geolocation;214
13.5.1;6.5.1 Geolocation Model;214
13.5.2;6.5.2 Geolocation Algorithm;217
13.5.3;6.5.3 CRLB of the Geolocation Error;218
13.5.4;6.5.4 Calculation Analysis of the Geolocation Error;219
13.6;References;223
14;Chapter 7 Geolocation by Near-Space Platforms;225
14.1;7.1 An Overview of Geolocation by Near-Space Platforms;225
14.1.1;7.1.1 Near-Space Platform Overview;225
14.1.2;7.1.2 Geolocation by the Near-Space Platform;226
14.2;7.2 Multiplatform Triangulation;226
14.2.1;7.2.1 Theory of 2D Triangulation;226
14.2.2;7.2.2 Error Analysis for Dual-Station Triangulation;227
14.2.3;7.2.3 Optimal Geometric Configuration of Observers;229
14.3;7.3 Multiplatform TDOA Geolocation;233
14.3.1;7.3.1 Theory of Multiplatform TDOA Geolocation;233
14.3.2;7.3.2 2D TDOA Geolocation Algorithm;234
14.3.3;7.3.3 TDOA Geolocation Using the Altitude Assumption;237
14.3.4;7.3.4 3D TDOA Geolocation Algorithm;237
14.4;7.4 Localization Theory by a Single Platform;239
14.4.1;7.4.1 Measurement Model of Localization;240
14.4.2;7.4.2 A 2D Approximate Localization Method;241
14.4.3;7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization Method;243
14.4.4;7.4.4 Simulation;245
14.5;References;247
15;Chapter 8 Satellite-to-Satellite Passive Orbit Determination by Bearings Only;249
15.1;8.1 Introduction;249
15.2;8.2 Model and Method of Bearings-Only Passive Tracking;249
15.2.1;8.2.1 Mathematic Model in the Case of the Two-Body Problem;250
15.2.2;8.2.2 Tracking Method in the Case of the Two-Body Model;251
15.2.3;8.2.3 Mathematical Model Considering J2 Perturbation of Earth Oblateness;254
15.2.4;8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness;255
15.3;8.3 System Observability Analysis;257
15.3.1;8.3.1 Description Method for System Observability;257
15.3.2;8.3.2 Influence of Factors on the State Equation;258
15.3.3;8.3.3 Influence of Factors on the Measurement Equation;259
15.4;8.4 Tracking Simulation and Analysis;261
15.4.1;8.4.1 Simulation in the Case of the Two-Body Model;263
15.4.2;8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness;273
15.5;8.5 Summary;280
15.6;References;281
16;Chapter 9 Satellite-to-Satellite Passive Tracking Based on Angle and Frequency Information;283
16.1;9.1 Introduction of Passive Tracking;283
16.2;9.2 Tracking Model and Method;284
16.2.1;9.2.1 Mathematic Model in the Case of the Two-Body Model;284
16.2.2;9.2.2 Tracking Method in the Case of the Two-Body Model;285
16.2.3;9.2.3 Mathematical Models Considering J2 Perturbation of Earth Oblateness;288
16.2.4;9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness;289
16.3;9.3 System Observability Analysis;290
16.3.1;9.3.1 Influence of Factors of the State Equation;291
16.3.2;9.3.2 Influence of Factors of the Measurement Equation;291
16.4;9.4 Simulation and Its Analysis;299
16.4.1;9.4.1 Simulation in the Case of the Two-Body Model;300
16.4.2;9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness;318
16.5;9.5 Summary;330
16.6;References;331
17;Chapter 10 Satellite-to-Satellite Passive Orbit Determination Based on Frequency Only;333
17.1;10.1 The Theory and Mathematical Model of Passive Orbit Determination Based on Frequency Only;335
17.1.1;10.1.1 The Theory of Orbit Determination Based on Frequency Only;335
17.1.2;10.1.2 The System Model in the Case of the Two-Body Model;335
17.1.3;10.1.3 The System Model for J2 Perturbation of Earth Oblateness;337
17.2;10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO and Frequency;339
17.2.1;10.2.1 Introduction of Particle Swarm Optimization (PSO);339
17.2.2;10.2.2 Orbit Determination Method Based on the PSO Algorithm;341
17.3;10.3 System Observability Analysis;342
17.3.1;10.3.1 Simulation Scenario 1;344
17.3.2;10.3.2 Simulation Scenario 2;345
17.3.3;10.3.3 Simulation Scenario 3;347
17.4;10.4 CRLB of the Orbit Parameter Estimation Error;351
17.5;10.5 Orbit Determination and Tracking Simulation and Its Analysis;355
17.5.1;10.5.1 Simulation in the Case of the Two-Body Model;356
17.5.2;10.5.2 Simulation in the Case of Considering the Perturbation;369
17.6;References;370
18;Chapter 11 A Prospect of Space Electronic Reconnaissance Technology;371
19;Appendix: Transformation of Orbit Elements, State and Coordinates of Satellites in Two-Body Motion;373
20;Index;377
mehr