Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Multiple Access Techniques for 5G Wireless Networks and Beyond

E-BookPDF1 - PDF WatermarkE-Book
685 Seiten
Englisch
Springer International Publishingerschienen am23.08.20181st ed. 2019
Verfügbare Formate
BuchGebunden
EUR181,89
E-BookPDF1 - PDF WatermarkE-Book
EUR171,19

Produkt

Details
Weitere ISBN/GTIN9783319920900
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2018
Erscheinungsdatum23.08.2018
Auflage1st ed. 2019
Seiten685 Seiten
SpracheEnglisch
IllustrationenXXIII, 685 p. 298 illus., 209 illus. in color.
Artikel-Nr.3943432
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface;5
2;Contents;8
3;About the Editors;10
4;Acronyms;12
5;Part I Orthogonal Multiple Access Techniques and Waveform Design;23
6;1 Introduction to Cellular Mobile Communications;24
6.1;1.1 Introduction;24
6.2;1.2 Cellular Mobile Communication: A Primer;25
6.2.1;1.2.1 The Evolution of Mobile Technologies;28
6.2.2;1.2.2 First-Generation Cellular Systems;29
6.2.3;1.2.3 Second-Generation Cellular Systems;30
6.2.4;1.2.4 Third-Generation Cellular Systems;32
6.2.5;1.2.5 Fourth-Generation Cellular Systems;38
6.3;1.3 5G Drivers, Technologies, and Spectrum;43
6.3.1;1.3.1 5G Drivers;44
6.3.2;1.3.2 5G Technologies;46
6.3.3;1.3.3 5G Spectrum and mm-Wave Band;51
6.4;1.4 Waveform Design for 5G;53
6.5;1.5 Multiple Access Techniques in 1G to 5G;54
6.6;1.6 What is Non-Orthogonal Multiple Access?;55
6.7;1.7 Conclusion;57
6.8;References;57
7;2 OFDM Enhancements for 5G Based on Filtering and Windowing;59
7.1;2.1 Motivation;59
7.1.1;2.1.1 Multi-carrier Transmission;60
7.2;2.2 5G Waveform Requirements and Scenarios;63
7.2.1;2.2.1 Mixed Numerology;64
7.2.2;2.2.2 Asynchronous Uplink Transmission;65
7.3;2.3 Candidate 5G Waveforms;65
7.3.1;2.3.1 Weighted Overlap and Add (WOLA);68
7.3.2;2.3.2 Universal Filtered OFDM (UF-OFDM);69
7.3.3;2.3.3 Filtered OFDM (f-OFDM);72
7.3.4;2.3.4 Comparison Between the Different Waveforms;73
7.4;2.4 Summary;78
7.5;References;79
8;3 Filter Bank Multicarrier Modulation;82
8.1;3.1 Why FBMC?;82
8.2;3.2 Multicarrier Modulation;84
8.2.1;3.2.1 CP-OFDM;87
8.3;3.3 FBMC-OQAM;88
8.3.1;3.3.1 Latency;91
8.3.2;3.3.2 Channel Estimation;92
8.4;3.4 Discrete-Time System Model;92
8.4.1;3.4.1 IFFT Implementation;94
8.5;3.5 One-Tap Equalizers in Doubly Selective Channels;96
8.6;3.6 Block Spread FBMC: Enabling All MIMO Methods;100
8.7;3.7 Pruned DFT-Spread FBMC-OQAM: Reducing the PAPR;106
8.8;3.8 Summary;108
8.9;References;109
9;4 Generalized Frequency Division Multiplexing: A Flexible Multicarrier Waveform;112
9.1;4.1 Introduction to GFDM Modulator;112
9.1.1;4.1.1 Continuous Signal Model;113
9.1.2;4.1.2 Discrete Signal Model;115
9.1.3;4.1.3 GFDM Matrix Decomposition;118
9.1.4;4.1.4 Performance Indicators;121
9.1.5;4.1.5 GFDM Pulse Shaping Filter Design;124
9.1.6;4.1.6 Multicarrier Waveforms Generator;132
9.1.7;4.1.7 Channel Estimation for GFDM Detection;137
9.1.8;4.1.8 Transmission Diversity for GFDM;146
9.2;4.2 Link-Level Waveform Comparison;148
9.2.1;4.2.1 System Configurations;150
9.2.2;4.2.2 OOB Emission;152
9.2.3;4.2.3 PAPR;153
9.2.4;4.2.4 FER Under a Doubly Dispersive Channel;154
9.2.5;4.2.5 FER with Imperfect Synchronization and Channel Estimation;156
9.2.6;4.2.6 Section Summary;157
9.3;4.3 Multiple Access with GFDM;157
9.3.1;4.3.1 Signal Model;158
9.3.2;4.3.2 Frequency Domain Processing;160
9.3.3;4.3.3 Asynchronous MA Evaluation;163
9.3.4;4.3.4 Mixed-Numerology with GFDM;166
9.4;4.4 GFDM Implementation;170
9.4.1;4.4.1 Modem Implementation;171
9.4.2;4.4.2 Complete Transceiver Chain and Extension for MIMO;174
9.5;References;180
10;Part II Non-Orthogonal Multiple Access (NOMA) in the Power Domain;183
11;5 NOMA: An Information-Theoretic Perspective;184
11.1;5.1 What Is Non-Orthogonal Multiple Access (NOMA)?;184
11.2;5.2 What Drives NOMA?;187
11.3;5.3 Theory Behind NOMA;190
11.3.1;5.3.1 Single-Cell NOMA;190
11.3.2;5.3.2 Multi-Cell NOMA;195
11.3.3;5.3.3 NOMA in MIMO Networks;198
11.4;5.4 Moving from Theory to Practice;200
11.4.1;5.4.1 SIC in 4G Networks;201
11.4.2;5.4.2 Multi-Cell NOMA Solutions;202
11.5;5.5 Physical Layer Security in NOMA;203
11.5.1;5.5.1 Description of the Channel Models;203
11.5.2;5.5.2 Physical Layer Security via Beamforming;206
11.5.3;5.5.3 Research Directions;207
11.6;References;208
12;6 Optimal Power Allocation for Downlink NOMA Systems;211
12.1;6.1 Introduction;211
12.2;6.2 Fundamentals of Downlink NOMA;212
12.3;6.3 Two-User NOMA;215
12.3.1;6.3.1 Optimal Power Allocation for MMF;215
12.3.2;6.3.2 Optimal Power Allocation for SR Maximization;216
12.3.3;6.3.3 Optimal Power Allocation for EE Maximization;218
12.4;6.4 MU-NOMA;221
12.4.1;6.4.1 Optimal Power Allocation for MMF;221
12.4.2;6.4.2 Optimal Power Allocation for SR Maximization;222
12.4.3;6.4.3 Optimal Power Allocation for EE Maximization;225
12.5;6.5 MC-NOMA;227
12.5.1;6.5.1 Optimal Power Allocation for MMF;228
12.5.2;6.5.2 Optimal Power Allocation for SR Maximization;229
12.5.3;6.5.3 Optimal Power Allocation for EE Maximization;231
12.6;6.6 Numerical Results;235
12.7;6.7 Conclusion;238
12.8;References;241
13;7 On the Design of Multiple-Antenna Non-Orthogonal Multiple Access;244
13.1;7.1 Introduction;244
13.2;7.2 System Model and Framework Design;246
13.2.1;7.2.1 User Clustering;246
13.2.2;7.2.2 CSI Acquisition;247
13.2.3;7.2.3 Superposition Coding and Transmit Beamforming;249
13.2.4;7.2.4 Successive Interference Cancellation;250
13.3;7.3 Performance Analysis and Optimization;250
13.3.1;7.3.1 Average Transmission Rate;251
13.3.2;7.3.2 Power Allocation;253
13.3.3;7.3.3 Feedback Distribution;256
13.3.4;7.3.4 Mode Selection;257
13.3.5;7.3.5 Joint Optimization Scheme;258
13.4;7.4 Asymptotic Analysis;259
13.4.1;7.4.1 Interference Limited Case;259
13.4.2;7.4.2 Noise-Limited Case;264
13.5;7.5 Simulation Results;264
13.6;7.6 Conclusion;268
13.7;References;269
14;8 NOMA for Millimeter Wave Networks;272
14.1;8.1 Introduction;272
14.2;8.2 Fundamentals of mmWave Communications;273
14.2.1;8.2.1 Path Loss and Small-Scale Fading;273
14.2.2;8.2.2 Directivity Gain;274
14.2.3;8.2.3 User Association;274
14.3;8.3 Unicast Transmissions for mmWave-NOMA Networks;275
14.3.1;8.3.1 System Model;276
14.3.2;8.3.2 Performance Analysis;277
14.3.3;8.3.3 Numerical Results;281
14.4;8.4 Multicast Transmissions for mmWave-NOMA Networks;284
14.4.1;8.4.1 System Model;285
14.4.2;8.4.2 Performance Analysis;286
14.4.3;8.4.3 Numerical Results;289
14.5;8.5 Cooperative Multicast Transmissions for mmWave-NOMA HetNets;291
14.5.1;8.5.1 System Model;292
14.5.2;8.5.2 Performance Analysis;293
14.5.3;8.5.3 Numerical Results;295
14.6;8.6 Summary;296
14.7;References;298
15;9 Full-Duplex Non-Orthogonal Multiple Access Networks;300
15.1;9.1 Introduction;300
15.2;9.2 Full-Duplex NOMA Networks;301
15.2.1;9.2.1 Preliminaries;301
15.2.2;9.2.2 Challenges of FD-NOMA Resource Optimization;304
15.2.3;9.2.3 User Pairing and Power Optimization;304
15.2.4;9.2.4 Optimization Tools;307
15.3;9.3 State of the Art in FD and NOMA Resource Optimization;308
15.3.1;9.3.1 FD Resource Optimization;308
15.3.2;9.3.2 NOMA Resource Optimization;309
15.3.3;9.3.3 FD-NOMA Resource Optimization;311
15.4;9.4 Numerical Results;311
15.5;9.5 Conclusions and Open Problems;315
15.6;References;316
16;10 Heterogeneous NOMA with Energy Cooperation;319
16.1;10.1 Background;319
16.1.1;10.1.1 Resource Allocation in NOMA HetNets;319
16.1.2;10.1.2 Energy Cooperation;320
16.2;10.2 Network Model and Problem Formulation;321
16.2.1;10.2.1 Downlink NOMA Transmission;322
16.2.2;10.2.2 Energy Model;324
16.2.3;10.2.3 Problem Formulation;325
16.3;10.3 Proposed Resource Allocation Scheme;326
16.3.1;10.3.1 Resource Allocation Under Fixed Transmit Power;326
16.3.2;10.3.2 Resource Allocation Under Power Control;332
16.3.3;10.3.3 Comparison with FTPA;334
16.3.4;10.3.4 Comparison with No Renewable Energy;334
16.3.5;10.3.5 Comparison with No Energy Cooperation;335
16.4;10.4 Simulation Results;335
16.4.1;10.4.1 User Association Under Fixed Transmit Power;335
16.4.2;10.4.2 Power Control Under Fixed User Association;338
16.4.3;10.4.3 Joint User Association and Power Control;340
16.5;10.5 Conclusion and Future Work;342
16.6;References;342
17;11 NOMA in Vehicular Communications;346
17.1;11.1 Background and Motivation;346
17.1.1;11.1.1 Overview of LTE-Based V2X;347
17.1.2;11.1.2 The Applicability of NOMA to V2X Communications;349
17.1.3;11.1.3 The Applicability of SM to V2X Communications;350
17.1.4;11.1.4 NOMA-SM Tailored for Vehicular Communications;351
17.1.5;11.1.5 Outline of the Chapter;352
17.2;11.2 System Model;352
17.2.1;11.2.1 The Principles of NOMA-SM;354
17.2.2;11.2.2 V2V Massive MIMO Channel Model;356
17.3;11.3 Capacity Analysis of the NOMA-SM System;357
17.3.1;11.3.1 Capacity Analysis of the Collaboration-Aided Vehicle;357
17.3.2;11.3.2 Capacity Analysis of the In-Car User;358
17.3.3;11.3.3 Mutual Information;359
17.3.4;11.3.4 An Illustration;361
17.4;11.4 Power Allocation Algorithms;362
17.4.1;11.4.1 Problem Formulation;363
17.4.2;11.4.2 The Proposed Power Allocation Algorithm;365
17.5;11.5 Simulations and Discussions;367
17.5.1;11.5.1 BER Results and Discussions;368
17.5.2;11.5.2 Capacity Results and Discussions;371
17.6;11.6 Chapter Summary and Future Outlook;375
17.7;References;376
18;Part III NOMA in Code and Other Domains;380
19;12 Sparse Code Multiple Access (SCMA);381
19.1;12.1 General Description;381
19.1.1;12.1.1 System Model;382
19.1.2;12.1.2 Multi-user Detection;386
19.2;12.2 Performance Evaluation;390
19.2.1;12.2.1 Average Error Probability;390
19.2.2;12.2.2 Capacity and Cutoff Rate;400
19.3;12.3 Codebook Design;405
19.3.1;12.3.1 General Design Rules;406
19.3.2;12.3.2 Multi-user Codebooks Design for Uplink SCMA Systems;411
19.3.3;12.3.3 Low-Projected Multi-dimensional Constellations Design;415
19.4;12.4 SCMA for 5G Radio Transmission;425
19.4.1;12.4.1 Application Scenarios for 5G Networks;425
19.4.2;12.4.2 Challenges and Future Works;426
19.5;References;426
20;13 Interleave Division Multiple Access (IDMA);429
20.1;13.1 Overview;429
20.2;13.2 Basic Principles of IDMA;432
20.2.1;13.2.1 IDMA Transmitter Principles;433
20.2.2;13.2.2 Operations on a Multiple Access Node;435
20.2.3;13.2.3 Overall IDMA Receiver;438
20.2.4;13.2.4 Performance Evaluation Through SNR Evolution;440
20.2.5;13.2.5 Superposition Coded Modulation (SCM);441
20.3;13.3 Power Control for IDMA;442
20.3.1;13.3.1 Transmitted and Received Power Minimization;442
20.3.2;13.3.2 Feasible Profile;443
20.3.3;13.3.3 Greedy Search;443
20.3.4;13.3.4 Approximate Linear Programming Method;444
20.4;13.4 Random Access via IDMA;446
20.4.1;13.4.1 Limitations of Conventional Systems;446
20.4.2;13.4.2 Random IDMA with Decentralized Power Control;446
20.5;13.5 IDMA in MIMO Systems;450
20.5.1;13.5.1 Multi-User Gain in MIMO Systems;450
20.5.2;13.5.2 Iterative Maximum Ratio Combining (I-MRC);451
20.5.3;13.5.3 Data-Aided Channel Estimation (DACE);452
20.6;13.6 Prospective Applications of IDMA in 5G Systems;454
20.7;13.7 Summary;457
20.8;References;457
21;14 Pattern Division Multiple Access (PDMA);462
21.1;14.1 Origination and Principles of PDMA;462
21.1.1;14.1.1 Error Propagation Problem in SIC;463
21.1.2;14.1.2 Transmitter and Receiver Joint Design;463
21.1.3;14.1.3 PDMA Definition and Framework;465
21.1.4;14.1.4 PDMA Transmitting and Receiving Scheme;467
21.2;14.2 Pattern Design of PDMA;468
21.2.1;14.2.1 Basic Pattern Matrix;469
21.2.2;14.2.2 Pattern Optimization Method;470
21.2.3;14.2.3 PDMA Pattern for 5G eMBB Scenario;472
21.2.4;14.2.4 PDMA Pattern for 5G mMTC Scenario;474
21.3;14.3 Receiver Algorithms of PDMA;475
21.3.1;14.3.1 Successive Interference Cancellation;475
21.3.2;14.3.2 Belief Propagation (BP);476
21.3.3;14.3.3 BP Based Iterative Detection and Decoding (BP-IDD);478
21.3.4;14.3.4 Expectation Propagation (EP);478
21.3.5;14.3.5 Comparison of Different Receivers;481
21.4;14.4 PDMA Performance;481
21.4.1;14.4.1 Link Level Simulation (LLS);481
21.4.2;14.4.2 System-Level Simulation (SLS);485
21.5;14.5 Extension Design of PDMA;486
21.5.1;14.5.1 PDMA Based Grant Free Transmission;486
21.5.2;14.5.2 Cooperative PDMA;488
21.5.3;14.5.3 PDMA Combing with Massive MIMO;490
21.5.4;14.5.4 PDMA Combing with Interleaving;491
21.5.5;14.5.5 PDMA Combing with Polar Coding;494
21.6;14.6 PDMA Applications;497
21.6.1;14.6.1 Application Scenarios;497
21.6.2;14.6.2 System Design Aspects;499
21.7;14.7 Challenges and Trends;500
21.8;References;502
22;15 Low Density Spreading Multiple Access;504
22.1;15.1 Motivations for Low Density Spreading;504
22.1.1;15.1.1 Code Division Multiple Access (CDMA);504
22.1.2;15.1.2 Low Density Spreading CDMA;507
22.2;15.2 Multicarrier Low Density Spreading Multiple Access;510
22.2.1;15.2.1 MC-LDSMA System Model;510
22.2.2;15.2.2 MC-LDSMA Properties in Comparison with Other Multiple Access Techniques;516
22.3;15.3 Challenges and Optimization Opportunities for LDS;518
22.3.1;15.3.1 Envelope Fluctuations in LDS Multiple Access;518
22.3.2;15.3.2 Radio Resource Allocation for LDS;520
22.4;15.4 Summary;523
22.5;References;524
23;16 Grant-Free Multiple Access Scheme;526
23.1;16.1 Motivation;526
23.1.1;16.1.1 On Grant-Free Multiple Access;527
23.1.2;16.1.2 Grant-Free Key Technical Components;527
23.2;16.2 Grant-Free Transmission;529
23.2.1;16.2.1 Resource Configuration;529
23.2.2;16.2.2 HARQ Procedure;531
23.2.3;16.2.3 Contention and Resolution;533
23.3;16.3 Performance Analysis and Evaluation;536
23.3.1;16.3.1 Reliability with Repetitions;536
23.3.2;16.3.2 UE Activity Detection;538
23.3.3;16.3.3 Grant-Free and NOMA Performance;539
23.4;16.4 Conclusion and Summary;542
23.5;References;543
24;17 Random Access Versus Multiple Access;545
24.1;17.1 Current Random Access (RA) Schemes;545
24.1.1;17.1.1 Carrier Sensing Protocols;546
24.1.2;17.1.2 Distributed Reservation Protocols;547
24.1.3;17.1.3 ALOHA Protocols;548
24.2;17.2 5G NOMA-Based RA Proposals for IoT;556
24.2.1;17.2.1 Codebook-Based MA;558
24.2.2;17.2.2 Sequence-Based MA;560
24.2.3;17.2.3 Interleaver/Scrambled-Based MA;564
24.3;17.3 Additional NOMA-Based RA Schemes for IoT;566
24.3.1;17.3.1 Slotted RA Solutions;566
24.3.2;17.3.2 Unslotted RA Solutions;579
24.4;References;590
25;Part IV Challenges, Solutions, and Future Trends;595
26;18 Experimental Trials on Non-Orthogonal Multiple Access;596
26.1;18.1 Introduction;596
26.2;18.2 Downlink NOMA;597
26.2.1;18.2.1 Concept;597
26.2.2;18.2.2 Receiver;597
26.3;18.3 Combination of Downlink NOMA and MIMO;599
26.3.1;18.3.1 Concept;599
26.3.2;18.3.2 Transceiver Design for Downlink NOMA Combined with SU-MIMO;602
26.3.3;18.3.3 Combination of Downlink NOMA with Open-Loop SU-MIMO;604
26.4;18.4 Link-Level Evaluation and Experiment Parameters;606
26.5;18.5 Link-Level Performance Evaluation with Different Receivers;607
26.6;18.6 NOMA Experimental Trials;608
26.6.1;18.6.1 Test Bed Using Fading Emulator;608
26.6.2;18.6.2 Configurations of Outdoor and Indoor Experimental Trials;609
26.7;18.7 Trial Results;611
26.7.1;18.7.1 Indoor Experiments;611
26.7.2;18.7.2 Outdoor Experiments;614
26.8;18.8 Conclusion;615
26.9;References;616
27;19 Non-Orthogonal Multiple Access in LiFi Networks;617
27.1;19.1 A Brief Introduction to Visible Light Communication;617
27.2;19.2 System Model;619
27.2.1;19.2.1 Channel Model;619
27.2.2;19.2.2 Application of NOMA to LiFi;621
27.3;19.3 Performance Evaluation;627
27.3.1;19.3.1 Distribution Functions of the Channel Gain;627
27.3.2;19.3.2 Case 1: Guaranteed Quality of Service;628
27.3.3;19.3.3 Case 2: Opportunistic Best-Effort Service;629
27.4;19.4 Impact of User Pairing;633
27.4.1;19.4.1 Impact of User Pairing on Individual Rates;633
27.4.2;19.4.2 Impact of User Pairing on the Sum Rate;635
27.5;19.5 Simulation Results;639
27.5.1;19.5.1 Theoretical Framework;639
27.5.2;19.5.2 Multipath Reflections and Shadowing Effect;643
27.6;19.6 Summary and Future Works;644
27.7;References;645
28;20 NOMA-Based Integrated Terrestrial-Satellite Networks;647
28.1;20.1 Background;647
28.2;20.2 System Model and Problem Formulation;650
28.3;20.3 User Paring Scheme;655
28.3.1;20.3.1 Selection of Satellite User;655
28.3.2;20.3.2 Terrestrial User Paring Scheme;656
28.4;20.4 Terrestrial Resource Allocation;659
28.4.1;20.4.1 Terrestrial Beamforming;659
28.4.2;20.4.2 Intra-group Power Allocation;660
28.4.3;20.4.3 Inter-group Power Allocation;662
28.5;20.5 Satellite Resource Allocation;664
28.5.1;20.5.1 Satellite Beamforming;665
28.5.2;20.5.2 Satellite Power Allocation;666
28.5.3;20.5.3 Joint Power Allocation;668
28.6;20.6 Performance Evaluation;669
28.7;20.7 Conclusion;674
28.8;References;675
29;21 Conclusions and Future Research Directions for NOMA;677
29.1;21.1 Summary;677
29.2;21.2 Open Issues and Future Research Challenges;678
29.2.1;21.2.1 A New Era of Hybrid Multiple Access;678
29.2.2;21.2.2 Combination of NOMA with Other Advanced Physical Layer Designs;680
29.3;21.3 Integrating NOMA into Systems Beyond Cellular Communications;683
29.4;References;684
30;Index;686
mehr

Autor

Mojtaba Vaezi received the Ph.D. degree in Electrical Engineering from McGill University in 2014. Since 2015 he has been with Princeton University as a Postdoctoral Research Fellow and Associate Research Scholar. He is currently an Assistant Professor of ECE at Villanova University and a Visiting Research Collaborator at Princeton University. Before joining Princeton, he was a researcher at Ericsson Research in Montreal, Canada. His research interests include the broad areas of information theory, wireless communications, and signal processing, with an emphasis on physical layer security and radio access technologies. Among his publications in these areas is the book Cloud Mobile Networks: From RAN to EPC (Springer, 2017). Dr. Vaezi has served as the president of McGill IEEE Student Branch during 2012-2013. He is an Associate Editor of IEEE Communications Magazine and IEEE Communications Letters. He has co-organized four international NOMA workshops at VTC-Spring'17, Globecom'17, ICC'18, and Globecom'18. Dr. Vaezi is a recipient of a number of academic, leadership, and research awards, including McGill Engineering Doctoral Award, IEEE Larry K. Wilson Regional Student Activities Award in 2013, the Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship in 2014, and Ministry of Science and ICT of Korea's best paper award in 2017.

Zhiguo Ding received his B.Eng. in Electrical Engineering from the Beijing University of Posts and Telecommunications in 2000, and the Ph.D. degree in Electrical Engineering from Imperial College London in 2005. From Jul. 2005 to Apr. 2018, he was working in Queen's University Belfast, Imperial College, Newcastle University and Lancaster University. Since Apr. 2018, he has been with the University of Manchester as a Professor in Communications. From Sept. 2012 to Sept. 2018, he has also been an academic visitor in Princeton University. Dr. Ding's research interests are 5G networks, game theory, cooperative and energy harvesting networks and statistical signal processing. He is serving as an Editor for IEEE Transactions on Communications and IEEE Transactions on Vehicular Technology. He served as an Editor for IEEE Wireless Communication Letters, IEEE Communication Letters, and Journal of Wireless Communications and Mobile Computing. He received the best paper award in IET Comm. Conf. on Wireless, Mobile and Computing, 2009 and the IEEE WCSP 2015, IEEE Transactions on Vehicular Technologies Top Editor 2017, and the EU Marie Curie Fellowship 2012-2014.

H. Vincent Poor received the Ph.D. degree in EECS from Princeton University in 1977. From 1977 until 1990, he was on the faculty of the University of Illinois at Urbana-Champaign. Since 1990 he has been on the faculty at Princeton, where he is currently the Michael Henry Strater University Professor of Electrical Engineering. During 2006 to 2016, he served as Dean of Princeton's School of Engineering and Applied Science. His research interests are in the areas of information theory and signal processing, and their applications in wireless networks, energy systems and related fields. Dr. Poor is a member of the National Academy of Engineering and the National Academy of Sciences, and is a foreign member of the Chinese Academy of Sciences, the Royal Society, and other national and international academies. Other recognition of his work includes the 2017 IEEE Alexander Graham Bell Medal, and honorary doctorates and professorships from a number of universities,