Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Three-Dimensional Imaging, Visualization, and Display

E-BookPDF1 - PDF WatermarkE-Book
531 Seiten
Englisch
SPRINGER USerschienen am15.07.20102009
Here is an up-to-date examination of recent developments in 3D imaging, as well as coverage of the prospects and challenges facing 3D moving picture systems and devices, including binocular, multi-view, holographic, and image reproduction techniques.mehr
Verfügbare Formate
BuchGebunden
EUR106,99
E-BookPDF1 - PDF WatermarkE-Book
EUR96,29

Produkt

KlappentextHere is an up-to-date examination of recent developments in 3D imaging, as well as coverage of the prospects and challenges facing 3D moving picture systems and devices, including binocular, multi-view, holographic, and image reproduction techniques.
Details
Weitere ISBN/GTIN9780387793351
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum15.07.2010
Auflage2009
Seiten531 Seiten
SpracheEnglisch
IllustrationenXVII, 531 p.
Artikel-Nr.1716376
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface;6
2;Contents;8
3;Contributors;11
4;Part I 3-D Image Display and Generation TechniquesBased on I.P;16
4.1;1 Three-Dimensional Integral Television Using High-Resolution Video System with 2000 Scanning Lines;17
4.1.1; Introduction;17
4.1.2; Image Formation;19
4.1.2.1;1.2.1 Geometric Approach;19
4.1.2.2;1.2.2 Wave Optical Approach;21
4.1.3; Resolution;24
4.1.3.1;1.3.1 Derivation of MTF in Capture and Display Stages;25
4.1.3.2;1.3.2 Examples of MTF;27
4.1.3.3;1.3.3 Effect of Pixel Pitch;30
4.1.4; Experimental System;30
4.1.5; Conclusion;35
4.2;2 High Depth-of-Focus Integral Imaging with Asymmetric Phase Masks;38
4.2.1; Introduction;38
4.2.2; Principles of Integral Imaging;39
4.2.2.1;2.2.1 Pickup Stage;39
4.2.2.2;2.2.2 Reconstruction Stage;42
4.2.3; Asymmetric Phase Masks;44
4.2.4; Pickup with an Asymmetric Phase Mask;47
4.2.5; Reconstruction with an Asymmetric Phase Mask;48
4.2.6; Conclusion;50
4.3;3 Integral Imaging Using Multiple Display Devices;53
4.3.1; Introduction;53
4.3.2; A Method to Improve Image Depth;54
4.3.2.1;3.2.1 Image Depth;55
4.3.2.2;3.2.2 A System to Extend Image Depth;57
4.3.3; A Method to Improve the Viewing Angle;58
4.3.3.1;3.3.1 Viewing Angle;58
4.3.3.2;3.3.2 A System to Widen the Viewing Angle;59
4.3.4; A Method to Enhance Viewing Resolution;61
4.3.4.1;3.4.1 Viewing Resolution;61
4.3.4.2;3.4.2 A System to Enhance Viewing Resolution;62
4.3.5; Summary;64
4.4;4 3-D to 2-D Convertible Displays Using Liquid Crystal Devices;67
4.4.1; Background;67
4.4.2; LC Parallax Barrier Techniques;69
4.4.2.1;4.2.1 The LC Parallax Barrier Method;69
4.4.2.1.1; ;70
4.4.2.2;4.2.2 The Time Multiplexing Method;72
4.4.2.2.1; ;72
4.4.3; The LC Lenticular Lens Technique;73
4.4.3.1;4.3.1 The Solid Phase LC Lenticular Lens Method;74
4.4.3.1.1; ;74
4.4.3.2;4.3.2 The LC Active Lenticular Lens Method;75
4.4.3.3;4.3.3 The Slanted Lenticular Lens Method;76
4.4.4; 3-D/2-D Convertible Integral Imaging;77
4.4.4.1;4.4.1 3-D/2-D Convertible Integral Imaging with Point Light Sources;77
4.4.4.1.1; Integral Imaging with Point Light Source Array and the Polymer-Dispersed Liquid Crystal;78
4.4.4.1.2; Integral Imaging Using a LED Array;79
4.4.4.1.3; Integral Imaging Using a Pinhole Array on a Polarizer;80
4.4.4.1.4; Integral Imaging Using a Pinhole Array on a Liquid Crystal Panel;83
4.4.4.1.5; Integral Imaging Using a Fiber Array;83
4.4.4.2;4.4.2 3-D/2-D Convertible Integral Imaging with a Lens Array -- A Multilayer Display System;85
4.4.4.2.1; ;85
4.4.5; Conclusion;87
4.5;5 Effect of Pickup Position Uncertainty in Three-Dimensional Computational Integral Imaging;90
4.5.1; Introduction;90
4.5.2; Integral Imaging and Computational Reconstruction;91
4.5.3; Sensitivity Analysis of Synthetic Aperture Integral Imaging (SAII);94
4.5.4; Degradation Analysis for a Point Source;98
4.5.5; Experimental Results;100
4.5.6; Conclusion;105
4.5.7; Appendix;106
4.6;6 3-D Image Reconstruction with Elemental Images Printed on Paper;109
4.6.1; Introduction;109
4.6.2; Dynamic Integral Imaging;110
4.6.3; Static Integral Imaging;111
4.6.4; Experimental Results;111
4.6.5; Conclusion;114
5;Part II Multiview Image Acquisition, Processingand Display;117
5.1;7 Viewing Zones of IP and Other Multi-view Image Methods;118
5.1.1; Introduction;119
5.1.2; Basic Viewing Zone Forming Principle of Multi-view Imaging Methods;120
5.1.3; Image Composition in the Multi-view;122
5.1.4; Viewing Zones for Non-integer Number of Pixels in a Pixel Cell;127
5.1.5; Viewing Zones in IP;131
5.1.6; Image Composition in IP;135
5.1.7; Image Compositions in Other Multi-view Image Methods;136
5.1.8; Conclusions;137
5.2;8 Rich Media Services for T-DMB: 3-D Video and 3-D Data Applications;139
5.2.1; Introduction;139
5.2.2; The T-DMB System;140
5.2.2.1;8.2.1 Service Framework of T-DMB;141
5.2.2.2;8.2.2 The T-DMB Protocol;142
5.2.2.3;8.2.3 Applications;145
5.2.3; The 3-D DMB System;145
5.2.3.1;8.3.1 Basic Concepts and Requirements;145
5.2.3.2;8.3.2 The 3-D DMB Service Framework;147
5.2.3.3;8.3.3 3-D Video Service;147
5.2.3.3.1; 3-D DMB Sender;147
5.2.3.3.2; 3-D DMB Receiver;148
5.2.3.3.3; Implementation and Evaluation;149
5.2.3.4;8.3.4 3-D Data Service;150
5.2.4; Efficient Coding of Stereoscopic Video;151
5.2.4.1;8.4.1 Related Work;151
5.2.4.2;8.4.2 Structure of 3-D DMB Codec;152
5.2.4.3;8.4.3 Implementation;153
5.2.4.4;8.4.4 Experimental Results;154
5.2.5; Conclusions and Future Work;155
5.3;9 Depth Map Generation for 3-D TV: Importance of Edge and Boundary Information;160
5.3.1; Introduction;160
5.3.2; Primed for 3-D TV;161
5.3.3; Depth Image-based Rendering;162
5.3.4; Depth Map Generation;165
5.3.5; Effect of Edge and Boundary Information;167
5.3.5.1;9.5.1 Local Scale Method;167
5.3.5.2;9.5.2 Standard Deviation Method;168
5.3.5.3;9.5.3 Sobel Method;169
5.3.5.4;9.5.4 Subjective Assessment;169
5.3.6; Role of Edge and Boundary Information;177
5.3.6.1;9.6.1 Subjective Assessment;180
5.3.7; Conclusions and Future Research;183
5.4;10 Large Stereoscopic LED Display by Use of a Parallax Barrier;189
5.4.1; Introduction;190
5.4.2; Enlargement of Viewing Areas of Stereoscopic LED Display by Use of a Parallax Barrier;191
5.4.3; Design of Parallax Barrier for Plural Viewers;198
5.4.4; Elimination of Pseudoscopic Viewing Area;202
5.4.5; Trace of Viewers Movements;205
5.4.6; Recent Developments;209
5.4.7; Summay;210
5.5;11 Synthesizing 3-D Images with Voxels;212
5.5.1; Introduction;212
5.5.2; Description of Voxels in the Point Light Source Array;214
5.5.3; Pixel Patterns of Incomplete Voxels;220
5.5.4; Pixel Patterns of Pixel Cells with Rhomb Shapes;222
5.5.5; Comparison of 3-D Image Synthesis Between MV and IP Imaging Systems;227
5.5.6; Conclusion;229
5.6;12 Multi-view Image Acquisition and Display;231
5.6.1; Introduction;232
5.6.2; Stereoscopic Image Distortion Analysis in Parallel Type Camera Configuration;234
5.6.3; Stereoscopic Image Distortion Analysis in Radial Type Camera Configuration;238
5.6.4; Multi-view Image Acquisition and Display;244
5.6.5; Conclusions;251
5.7;13 3-D Video Processing for 3-D TV;254
5.7.1; Introduction;254
5.7.2; 3-D Content Generation;257
5.7.2.1;13.2.1 Background;257
5.7.2.2;13.2.2 3-D Data Acquisition;257
5.7.2.3;13.2.3 2-D/3-D Conversion;259
5.7.2.4;13.2.4 3-D Mixed Reality Content Generation;261
5.7.3; 3-D Video CODECs;263
5.7.3.1;13.3.1 Background;263
5.7.3.2;13.3.2 Disparity Estimation;264
5.7.3.3;13.3.3 3-D Video Compression;266
5.7.3.4;13.3.4 Multi-View Video Coding Standard;271
5.7.4; Video Processing for 3-D Displays;273
5.7.4.1;13.4.1 Background;273
5.7.4.2;13.4.2 Intermediate Video Synthesis;274
5.7.4.3;13.4.3 Virtual View Rendering;276
5.7.5; Conclusion;278
6;Part III 3-D Image Acquisition, Processing and DisplayBased on Digital Holography;282
6.1;14 Imaging 3-D Objects by Extending the Depth of Focus in Digital Holography;283
6.1.1; Introduction;283
6.1.2; Angular Spectrum Method for Reconstructing Holograms on Tilted Planes;285
6.1.2.1;14.2.1 Experimental Configuration;285
6.1.2.2;14.2.2 Description of the Method and Reconstruction Algorithm;286
6.1.3; Extended Focus Image (EFI) by Digital Holography;290
6.1.3.1;14.3.1 Approaches Adopted for Extending the Depth-of-Focus in Classical Microscopes;291
6.1.4; Construction of an EFI by Means of Digital Holography;291
6.1.5; Constructing an EFI by DH Using Amplitude Reconstructions;295
6.1.6; Constructing an EFI by DH Using Amplitude and Phase Reconstructions;296
6.1.7; Conclusions;301
6.2;15 Extraction of Three-dimensional Information from Reconstructions of In-Line Digital Holograms;304
6.2.1; Introduction;304
6.2.2; Digital Holographic Recording;306
6.2.2.1;15.2.1 PSI Setup;307
6.2.2.2;15.2.2 PSI Theory;309
6.2.2.3;15.2.3 PSI Proof;310
6.2.3; Focus Detection;312
6.2.3.1;15.3.1 Focus and Imaging;312
6.2.3.1.1; Focus Measures in Digital Holography;313
6.2.3.2;15.3.2 Evaluation of Two Focus Measures;315
6.2.3.3;15.3.3 Autofocus;318
6.2.3.4;15.3.4 Depth from Focus;318
6.2.4; Extraction of Data from Digital Holographic Reconstructions;321
6.2.4.1;15.4.1 Extraction of Shape Information;322
6.2.4.2;15.4.2 Extraction of Extended Focused Image;324
6.2.4.3;15.4.3 Extraction of Objects from Digital Holographic Reconstructions;324
6.2.4.3.1; Extraction of Objects from Background in Digital Holographic Reconstructions;324
6.2.4.3.2; Extraction of Multiple Objects from Reconstructions;326
6.2.4.4;15.4.4 Synthetic Digital Holographic Scene Creation;327
6.2.5; Conclusions;329
6.3;16 Polarimetric Imaging of 3-D Object by Use of Wavefront-Splitting Phase-Shifting Digital Holography;334
6.3.1; Introduction;334
6.3.2; Wavefront-Splitting Phase-Shifting Digital Holography with a Phase Difference Between Orthogonal Polarizations;335
6.3.2.1;16.2.1 Phase Analysis by Two-Step Method;335
6.3.2.2;16.2.2 Phase-Shifting Method with Orthogonal Polarizations;336
6.3.3; Wavefront-Splitting Phase-Shifting Digital Holography;337
6.3.4; Stokes Vector;338
6.3.5; Experimental Results;339
6.3.6; Conclusions;343
6.4;17 Three-dimensional Display with Data Manipulation based on Digital Holography;346
6.4.1; Introduction;346
6.4.2; Three-Dimensional Holographic Display Systems Based on Digital Holography;347
6.4.3; Fast Recording System of Complex Amplitude of 3-D Object Based on Digital Holography;347
6.4.3.1;17.3.1 Fast Recording Systems Based on Phase-shifting Digital Holography;348
6.4.3.2;17.3.2 Phase Retrieval Method for Instantaneous Recording;350
6.4.4; Information Processing;355
6.4.5; Conclusions;358
7;Part IV Other 3-D Image Acquisition and DisplayTechniques, and Human Factors;361
7.1;18 A 3-D Display System Using Motion Parallax;362
7.1.1; Introduction This chapter is not a comprehensive review of the area of motion parallax. For such a review, we recommend the chapter entitled Depth from motion parallax in '133 5 '135. They are currently writing a more up-to-date review that will appear soon. ;362
7.1.2; Early Accounts of Motion Parallax and Early and Recent Experimental Studies;363
7.1.3; Demonstration;366
7.1.4; The Suggested 3-D Display System;367
7.1.5; Summary;369
7.1.6; Appendix;370
7.2;19 Dynamic Three-Dimensional Human Model;372
7.2.1; Introduction;372
7.2.2; Outline of 3-D Modeling;373
7.2.3; Synchronous Capture of Images from Multiple Video Cameras;373
7.2.4; Camera Calibration;375
7.2.5; 3-D Modeling;376
7.2.5.1;19.5.1 Volume Intersection Method;376
7.2.5.2;19.5.2 Modification of the 3-D Shape by Using Stereo Matching;377
7.2.5.2.1; Initial Depth Image;378
7.2.5.2.2; Stereo Matching Method;378
7.2.5.2.3; Integration of Depth Images;380
7.2.6; Texture Mapping;381
7.2.7; Real-Time and Continuous Display System;383
7.2.7.1;19.7.0 Dynamic 3-D Model;383
7.2.7.2;19.7.0 Texture Images;383
7.2.7.3;19.7.0 Information on Polygon Visibility;384
7.2.7.4;19.7.0 Camera Parameters;384
7.2.8; 3-D Video System for Archiving Japanese Traditional Performing Arts;385
7.2.9; Conclusion;386
7.3;20 Electronic Holography for Real Objects Using Integral Photography;388
7.3.1; Introduction;388
7.3.2; Calculation of Holograms from Integral Photography;390
7.3.2.1;20.2.1 Principle of Transformation from Integral Photography into Hologram;391
7.3.2.2;20.2.2 Basic Calculation;392
7.3.2.3;20.2.3 Avoidance of Aliasing;395
7.3.2.4;20.2.4 Elimination of Undesired Beams;398
7.3.2.5;20.2.5 Image Reconstructed by Basic Calculation;400
7.3.3; Reducing Computing Load;404
7.3.3.1;20.3.1 Reduction of Computing Load by Limiting Range of Computation;405
7.3.3.2;20.3.2 Reduction of Computing Load by Shifting Optical Field;407
7.3.3.3;20.3.3 Images Reconstructed by Using Method of Reducing Computing Load;409
7.3.4; Electronic Holography Using Real IP Images;410
7.3.5; Conclusion;414
7.4;21 Working Towards Developing Human Harmonic Stereoscopic Systems;416
7.4.1; The Geometry of Reproduced 3-D Space and Space Perception;418
7.4.1.1;21.1.1 Setting Optical Axes in Stereoscopic Shooting;418
7.4.1.1.1; Shooting with Parallel Optical Axes;418
7.4.1.1.2; Shooting with Crossed Optical Axes;419
7.4.1.2;21.1.2 Converting from Shooting Space to Stereoscopic Image Space;419
7.4.1.2.1; Parallel Camera Configuration;422
7.4.1.2.2; Toed-in Camera Configuration;423
7.4.1.3;21.1.3 Puppet-Theater Effect;424
7.4.1.3.1; Parallel Camera Configuration;425
7.4.1.3.2; Toed-in Camera Configuration;426
7.4.1.4;21.1.4 Cardboard Effect;427
7.4.1.4.1; Parallel Camera Configuration;428
7.4.1.4.2; Toed-in Camera Configuration;428
7.4.1.5;21.1.5 Summary;429
7.4.1.6;21.1.6 Geometry Mapping Simulation System;430
7.4.2; Binocular Fusion, Stereopsis, and Visual Comfort;430
7.4.2.1;21.2.1 Visual Functions as Indices of Visual Fatigue When Watching Stereoscopic Images;435
7.4.2.1.1; Participants and Methods;436
7.4.2.1.2; Viewing Condition and Procedures;437
7.4.2.1.3; Results;437
7.4.2.1.4; Conclusions from this Experiment;442
7.4.2.2;21.2.2 Spatial Distribution in Depth of Objects;444
7.4.2.2.1; Methods;447
7.4.2.2.2; Procedure;448
7.4.2.2.3; Results;450
7.4.2.2.4; Conclusions of this Experiment;452
7.4.2.3;21.2.3 Temporal Distribution in Depth of Objects;454
7.4.2.3.1; Methods;454
7.4.2.3.2; Results;455
7.4.2.3.3; Conclusions of this Experiment;458
7.4.2.3.4; Non-Principle Factors and Their Desirable (Allowable) Ranges;459
7.4.3; How to Avoid Undesired Effects;461
7.4.3.1;21.3.1 How to Avoid Spatial Distortion of Represented Space by Stereoscopic Image Systems;461
7.4.3.2;21.3.2 How to Avoid Visual Fatigue in Viewing Stereoscopic Images;462
7.4.3.2.1; Future Work;462
7.4.4; Note;463
7.5;22 Development of Time-Multiplexed Autostereoscopic Display Based on LCD Panel;466
7.5.1; Introduction;466
7.5.2; Autostereoscopic Time-Multiplexed Display;467
7.5.2.1;22.2.1 Concept of the Display;467
7.5.2.2;22.2.2 Optical Layout;468
7.5.3; Dynamic Properties of the Display Parts;471
7.5.3.1;22.3.1 Scan-and-Hold Properties of LCD Panel;471
7.5.3.2;22.3.2 Time-Mismatch Cross Talk;473
7.5.3.3;22.3.3 Driving of Pi-Cell;475
7.5.3.4;22.3.4 LCD Response Time, Response Time Acceleration Technique and Dynamic Cross Talk;478
7.5.3.5;22.3.5 Other Methods for Correction of the LCD Shortcomings;482
7.5.3.6;22.3.6 Frame Rate of LCD Panel;484
7.5.4; Practical Implementation and Experimental Results;484
7.5.5; Extension of the Developed Technique to Passive Eyeglasses Type Stereoscopic System;486
7.5.6; Summary;489
7.6;23 3-D Nano Object Recognition by Use of Phase Sensitive Scatterometry;491
7.6.1; Introduction;491
7.6.2; RCWA Based Scatterometry Theory;492
7.6.3; Three-Dimensional Nano Object Recognition;494
7.6.4; Conclusion;497
8;Index;500
mehr

Autor