Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
285 Seiten
Englisch
Wiley-VCHerschienen am25.08.20171. Auflage
Written by world-renowned experts on the topic with many years of research and consultancy experience, this invaluable book provides the practitioners' perspective, outlining the dangers and benefits of static electricity in industry.
The first chapter reviews the fundamentals of understanding fires and explosions in general and electricity-induced ignition in particular, while the following chapter is dedicated to the origins of static electricity in industrial settings, such as in flowing gases and the transport of disperse systems. The major part of the text deals with measuring static electricity, elimination of unwanted charges and hazard prevention under different conditions. It concludes with an overview of practical applications in chemical and mechanical engineering. Throughout the book, real-life case studies illustrate the fundamental aspects so as to further an understanding of how to control and apply static electricity and thus reduce material damages as well as increase occupational safety.
Plus additional movie sequences on the dedicated website showing static electricity in action.

Gunter Luttgens was born in Berlin, 1933, and holds a master's degree in electrical engineering. Since graduation he mainly worked in the chemical industry in the field of electrostatics. He was primarily responsible for laboratory research, as well as plant safety, in the area of fire and explosion prevention. In 1998 he was nominated by IEC as an expert for electrostatic test methods. Since more than twenty five years he carried out lectures on static electrification and safety measures together with his wife Sylvia. He published several articles and specialist books. In 2013 he received the International Fellow Award by the European Working Party (EFCE) as a researcher and teacher in the field of 'Static Electricity in Industry'.

Sylvia Luttgens was born in Geroda, 1946, was graduated a teacher and tried to direct the interest of her students to Music and English. Then she learned about static electrification and that it could be the cause for many a fire or an explosion. So she has been working together with her husband Gunter, carrying out experimental lectures (up to 2015) in seminars about electrostatics, giving practical proof of the theory. Besides she is publishing articles and writing specialist books on this topic.
Together with Gunter she compiled the first encyclopaedia on static electricity fifteen years ago and the third edition was published in 2013.

Wolfgang Schubert was born in 1952. He studied print technology in Leipzig and is a trained printer. He became self-employed in 1997 having previously worked in various managerial roles in the print industry and in sales and marketing for manufacturers of roll fed and sheet fed printing presses. Since then he has also been working in the specialised field of electrostatics, in sales and marketing and also in further education. He has co-authored the specialist publication Static Electricity.
In May 2016 he was publicly appointed and inaugurated by the Leipzig Chamber of Commerce and Industry (IHK) as an expert in the fields of printing processes, printing presses, printability, runnability, and packaging printing. He also works as an expert in the field of electrostatics.
mehr
Verfügbare Formate
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR115,99
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR115,99

Produkt

KlappentextWritten by world-renowned experts on the topic with many years of research and consultancy experience, this invaluable book provides the practitioners' perspective, outlining the dangers and benefits of static electricity in industry.
The first chapter reviews the fundamentals of understanding fires and explosions in general and electricity-induced ignition in particular, while the following chapter is dedicated to the origins of static electricity in industrial settings, such as in flowing gases and the transport of disperse systems. The major part of the text deals with measuring static electricity, elimination of unwanted charges and hazard prevention under different conditions. It concludes with an overview of practical applications in chemical and mechanical engineering. Throughout the book, real-life case studies illustrate the fundamental aspects so as to further an understanding of how to control and apply static electricity and thus reduce material damages as well as increase occupational safety.
Plus additional movie sequences on the dedicated website showing static electricity in action.

Gunter Luttgens was born in Berlin, 1933, and holds a master's degree in electrical engineering. Since graduation he mainly worked in the chemical industry in the field of electrostatics. He was primarily responsible for laboratory research, as well as plant safety, in the area of fire and explosion prevention. In 1998 he was nominated by IEC as an expert for electrostatic test methods. Since more than twenty five years he carried out lectures on static electrification and safety measures together with his wife Sylvia. He published several articles and specialist books. In 2013 he received the International Fellow Award by the European Working Party (EFCE) as a researcher and teacher in the field of 'Static Electricity in Industry'.

Sylvia Luttgens was born in Geroda, 1946, was graduated a teacher and tried to direct the interest of her students to Music and English. Then she learned about static electrification and that it could be the cause for many a fire or an explosion. So she has been working together with her husband Gunter, carrying out experimental lectures (up to 2015) in seminars about electrostatics, giving practical proof of the theory. Besides she is publishing articles and writing specialist books on this topic.
Together with Gunter she compiled the first encyclopaedia on static electricity fifteen years ago and the third edition was published in 2013.

Wolfgang Schubert was born in 1952. He studied print technology in Leipzig and is a trained printer. He became self-employed in 1997 having previously worked in various managerial roles in the print industry and in sales and marketing for manufacturers of roll fed and sheet fed printing presses. Since then he has also been working in the specialised field of electrostatics, in sales and marketing and also in further education. He has co-authored the specialist publication Static Electricity.
In May 2016 he was publicly appointed and inaugurated by the Leipzig Chamber of Commerce and Industry (IHK) as an expert in the fields of printing processes, printing presses, printability, runnability, and packaging printing. He also works as an expert in the field of electrostatics.
Details
Weitere ISBN/GTIN9783527803323
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Verlag
Erscheinungsjahr2017
Erscheinungsdatum25.08.2017
Auflage1. Auflage
Seiten285 Seiten
SpracheEnglisch
Dateigrösse13104 Kbytes
Artikel-Nr.3328819
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
1;Cover;1
2;Title Page;5
3;Copyright;6
4;Contents;7
5;About the Authors;15
6;Opening Remark;17
7;Preliminary Remarks;19
8;Preface;21
9;Chapter 1 Basics of Fire and Explosion: Risk Assessment;23
9.1;1.1 Basic Considerations on Fire and Explosion (? T1);23
9.1.1;1.1.1 Fuel;24
9.1.2;1.1.2 Heat;24
9.1.3;1.1.3 Oxygen;25
9.1.4;1.1.4 Inerting Process;25
9.1.5;1.1.5 Heat versus Oxygen;25
9.2;1.2 Explosive Atmosphere;25
9.2.1;1.2.1 Explosion Limits with Flammable Liquids;25
9.2.1.1;1.2.1.1 Classification of Flammable Liquids;27
9.2.2;1.2.2 Explosion Limits with Combustible Dusts;28
9.2.3;1.2.3 Metal Dusts;28
9.3;1.3 Hybrid Mixtures (? P7);28
9.4;1.4 Allocation of Explosion-Endangered Areas and Permissible Equipment (? P6);29
9.5;1.5 Permissible Equipment (Equipment Protection Level);29
9.5.1;1.5.1 Classification of Equipment Protection Level That Is Currently in the Introductory Stage;30
9.6;1.6 Ignition Sources;31
9.6.1;1.6.1 Hot Surfaces;31
9.6.2;1.6.2 Flames and Hot Gases (Including Hot Particles);31
9.6.3;1.6.3 Mechanically Generated Sparks (? MGS);32
9.6.4;1.6.4 Electrical Apparatus;32
9.6.5;1.6.5 Cathodic Protection;32
9.6.6;1.6.6 Static Electricity;32
9.6.7;1.6.7 Lightning;32
9.6.8;1.6.8 Electromagnetic Field;32
9.6.9;1.6.9 Electromagnetic Radiation;32
9.6.10;1.6.10 Ionizing Radiation;32
9.6.11;1.6.11 Ultrasonics;33
9.6.12;1.6.12 Adiabatic Compression and Shock Waves;33
9.6.13;1.6.13 Chemical Reactions;33
9.7;1.7 Minimum Ignition Energy (MIE);33
9.8;1.8 Imaginary Experiment to Assess the Hazardous Potential of Flammable Liquids;37
9.9;PowerPoint Presentations;40
9.10;References;40
10;Chapter 2 Principles of Static Electricity;41
10.1;2.1 Basics;41
10.2;2.2 Electrostatic Charging of Solids (? T2);43
10.3;2.3 Triboelectric Series;46
10.4;2.4 Surface Resistivity;46
10.4.1;2.4.1 Influence of Surface Texture on Static Charging;50
10.5;2.5 Electrostatic Charging of Liquids (? T2, T8);50
10.5.1;2.5.1 Charge Relaxation with Liquids;52
10.6;2.6 Charging by Gases;53
10.7;2.7 Electric Field;55
10.8;2.8 Electric Induction (? T3);58
10.8.1;2.8.1 Specification of Electric Induction;58
10.8.2;2.8.2 Image Charge;59
10.9;2.9 Capacitance and Capacitor;60
10.10;PowerPoint Presentations;60
10.11;References;61
11;Chapter 3 Metrology;63
11.1;3.1 Basics (? T7);63
11.1.1;3.1.1 Walking Test as a Paradigmatic Example;63
11.2;3.2 Appropriate Metrology for Electrostatic Safety Measures;66
11.3;3.3 Comparison: Electrostatics/Electrical Engineering;66
11.4;3.4 Selecting the Suitable Measurement Methods;67
11.4.1;3.4.1 Electrical Resistance;67
11.4.2;3.4.2 Fundamental Remarks for the Realization of Resistance Measurements (? T4);68
11.4.2.1;3.4.2.1 Volume Resistance and Deriving Volume Resistivity;68
11.4.2.2;3.4.2.2 Guard Ring Circuit to Measure the Volume Resistance;69
11.4.2.3;3.4.2.3 Surface Resistance and Deriving Surface Resistivity;70
11.4.2.4;3.4.2.4 Guard Ring Circuit to Measure the Surface Resistance;71
11.5;3.5 Assignment and Summary;71
11.5.1;3.5.1 Additive?Depleted Surface;72
11.6;3.6 Conductivity of Liquids;73
11.7;3.7 Bulk Materials;74
11.8;3.8 Concerning the Use of Insulating Material in Endangered Areas;74
11.9;3.9 Measurement of Electrostatic Charges;74
11.9.1;3.9.1 Voltage Measurement with Electrostatic Voltmeters;75
11.9.2;3.9.2 Charge Measurement by Means of a Faraday Pail;76
11.9.2.1;3.9.2.1 Faraday Cage;77
11.9.2.2;3.9.2.2 Charge Measurement on Free?Falling Objects;77
11.9.3;3.9.3 Measurement of Electric Field Strength;78
11.9.3.1;3.9.3.1 Induction Electric Field Meters;78
11.9.3.2;3.9.3.2 Errors When Measuring Field Strength;80
11.9.3.3;3.9.3.3 Further Types of Electric Field Meters;83
11.9.3.4;3.9.3.4 Further Applications of Induction Electric Field Meters;87
11.10;3.10 Other Measurement Applications;90
11.10.1;3.10.1 Measurement of Surface Charge on Moving Webs;90
11.10.2;3.10.2 Analysis of Protective Textile Clothing (Workwear);90
11.10.2.1;3.10.2.1 Triboelectric Test Procedure;91
11.10.2.2;3.10.2.2 Test Procedures with Electrostatic Influence;91
11.10.3;3.10.3 Test Procedure to Determine Discharge Capacity (Charged Plate Monitor);93
11.10.4;3.10.4 Test Procedure for Paper;95
11.10.5;3.10.5 Electrostatic Charging of Powdery Bulk Materials;96
11.10.6;3.10.6 Electrostatic Charging with Fluids;97
11.10.7;3.10.7 Electrostatic Charges in Chemical Production;98
11.11;?3.11 Capacitance;99
11.11.1;3.11.1 Capacitance Measurement (Charging Methods);99
11.11.2;3.11.2 Measurement of the Permittivity Value;100
11.11.3;3.11.3 Charge Decay Measurement (Relaxation Time);101
11.12;3.12 Themes around Air Humidity;103
11.12.1;3.12.1 Definitions about Climate;103
11.12.2;3.12.2 Fundamental Principles and Definitions;104
11.12.3;3.12.3 Methods of Measuring Atmospheric Humidity;105
11.12.3.1;3.12.3.1 Dew Point Hygrometry;105
11.12.3.2;3.12.3.2 Absorption Method;106
11.12.3.3;3.12.3.3 Hair Hygrometer;106
11.12.3.4;3.12.3.4 Psychrometer with Wet? and Dry?Bulb Thermometers;106
11.12.3.5;3.12.3.5 Lithium?Chloride Hygrometer;107
11.12.3.6;3.12.3.6 Capacitive Hygrometer;108
11.12.3.7;3.12.3.7 Resistive Hygrometer;108
11.12.4;3.12.4 Monitoring and Calibrating of Hygrometers;108
11.13;PowerPoint Presentations;109
11.14;Picture Credits;109
11.15;References;110
12;Chapter 4 Gas Discharges;111
12.1;4.1 Mechanisms of Gas Discharges (? T5);111
12.2;4.2 Electrostatic Gas Discharges;112
12.2.1;4.2.1 Detecting Gas Discharges by Means of Their High?Frequency Emissions;114
12.3;4.3 Types of Gas Discharges;116
12.3.1;4.3.1 Spark Discharge;116
12.3.2;4.3.2 One?Electrode Discharges;117
12.3.2.1;4.3.2.1 Corona Discharge;118
12.3.2.2;4.3.2.2 Brush Discharge;119
12.3.2.3;4.3.2.3 Cone Discharge (also Referred to as Powder Heap Discharge);120
12.3.2.4;4.3.2.4 Propagating Brush Discharge;120
12.4;4.4 Consequences of Gas Discharges;124
12.5;4.5 Listing of Traces Caused by Gas Discharges (? P11; T8);124
12.6;4.6 How Can Dangerous Gas Discharges Be Avoided?;125
12.6.1;4.6.1 Spark Discharges (V4.1);126
12.6.2;4.6.2 Corona Discharges;126
12.6.3;4.6.3 Brush Discharges and Super Brush Discharges;126
12.6.4;4.6.4 Cone Discharges;128
12.6.5;4.6.5 Propagating Brush Discharges;129
12.6.5.1;4.6.5.1 Curiosity When Hydraulic Oil Gradually Flows Out of a Metal Pipe;129
12.6.5.2;4.6.5.2 Pores at Enameled Containers;130
12.6.6;4.6.6 Simplified Overview of the Occurrence of Different Types of Gas Discharges;130
12.6.7;4.6.7 Assessment of Ignition Dangers Originating from Gas Discharges;130
12.6.8;4.6.8 Electrostatic Shock;133
12.7;PowerPoint Presentations;133
12.8;Picture Credits;133
12.9;Video Credits;133
12.10;References;133
13;Chapter 5 Preventing Electrostatic Disturbances;135
13.1;5.1 Electrostatics:?When Sparks Fly;135
13.2;5.2 Dielectric Strength;139
13.3;5.3 Discharging Charged Surfaces;140
13.3.1;5.3.1 Discharging on Material Webs;141
13.3.1.1;5.3.1.1 Behavior of Composite Materials;147
13.3.2;5.3.2 Discharging of Sheets;149
13.3.3;5.3.3 Discharging Other Objects;149
13.3.4;5.3.4 Discharging Granules and Similar Particles;151
13.4;5.4 Potential Hazards Posed by Discharge Electrodes;156
13.5;Picture Credits;158
13.6;Video Credits;159
13.7;References;159
13.8;Further Reading;159
14;Chapter 6 Description of Demonstration Experiments;161
14.1;6.1 Preliminary Remarks;162
14.2;6.2 Static Voltmeter;163
14.3;6.3 Field Meter;164
14.4;6.4 Van de Graaff Generator;164
14.5;6.5 Explosion Tube;164
14.6;6.6 Electrostatic Force Effects;166
14.6.1;6.6.1 Rolling Pipes;167
14.6.2;6.6.2 Hovering Pipes;168
14.6.3;6.6.3 Electroscope;169
14.6.4;6.6.4 Depicting Electrical Field Lines (in a Classical Way);170
14.7;6.7 Charges Caused by Separating Process;171
14.8;6.8 Charging of Particles;172
14.8.1;6.8.1 Charging of Single Particles;172
14.8.2;6.8.2 Charging of Many Particles (Granules);174
14.9;6.9 Electric Induction;175
14.9.1;6.9.1 Basic Experiment;175
14.9.2;6.9.2 Chimes;176
14.9.3;6.9.3 Electric Induction on Isolated Conductive Parts;177
14.10;6.10 Dissipating Properties;179
14.11;6.11 Experiments with the Explosion Tube;180
14.11.1;6.11.1 Electrostatic Charging of a Person;180
14.11.2;6.11.2 Ignition Voltage;181
14.11.3;6.11.3 Charging by Separation;182
14.12;6.12 Gas Discharges;182
14.12.1;6.12.1 Spark Discharges;182
14.12.2;6.12.2 Corona Discharges;183
14.12.3;6.12.3 Brush Discharges;184
14.12.4;6.12.4 Model Experiment: Ignition by Brush Discharges;184
14.12.5;6.12.5 Evidence of Ion Wind;185
14.12.6;6.12.6 Super Brush Discharges;185
14.12.7;6.12.7 Propagating Brush Discharges;186
14.12.7.1;6.12.7.1 Ignition of Dust;187
14.12.7.2;6.12.7.2 Short Circuit of a Double?Layer Charge;188
14.13;6.13 Fire and Explosion Dangers;190
14.13.1;6.13.1 Flash Point;190
14.13.2;6.13.2 Effects with Large Surfaces;190
14.13.3;6.13.3 Rich Mixture;191
14.13.4;6.13.4 Progressive Flame Front;192
14.13.5;6.13.5 Decanting of Gasoline Vapors;193
14.13.6;6.13.6 Oxygen Demand;194
14.13.7;6.13.7 Extinguishing with Water;195
14.13.8;6.13.8 Burning Handkerchief Does Not Burn Up;196
14.13.9;6.13.9 Inflaming Solid Combustibles;196
14.13.9.1;6.13.9.1 Gasification Process with Wood;196
14.13.9.2;6.13.9.2 Inflaming a Dust Heap;197
14.14;Reference;197
15;Chapter 7 Case Studies;199
15.1;7.1 Strategy of Investigation;199
15.1.1;7.1.1 Ignition Sources;200
15.1.2;7.1.2 General Approach;201
15.1.3;7.1.3 Hasty Consequence;201
15.2;7.2 Ignitions Due to Brush Discharges;202
15.2.1;7.2.1 Pouring Flaked Product into an Agitator Vessel;202
15.2.2;7.2.2 PE Liner Slipping Out of Paper Bag;203
15.2.3;7.2.3 Ignition Caused by an Antistatic PE Bag;204
15.2.4;7.2.4 Shaking Fine Dust Out of a PE Bag (Hybrid Mixture);205
15.2.5;7.2.5 Pumping Polluted Toluene;207
15.2.6;7.2.6 Impregnation of a Glass Fiber Fabric;208
15.2.7;7.2.7 Filling Pipe Blocked with Sulfur Leading to Ignition of Methanol;209
15.2.8;7.2.8 Ion Exchanger Resin in Toluene;210
15.2.9;7.2.9 Two Explosions in Big Storage Tanks;211
15.2.9.1;7.2.9.1 Explosion in a Floating Roof Tank Followed by Fire (2014);211
15.2.9.2;7.2.9.2 Explosion Disaster Near Bitburg (1954);212
15.3;7.3 Case Studies Related to Propagating Brush Discharges;214
15.3.1;7.3.1 Explosion in a Railcar Bulk Container;214
15.3.2;7.3.2 Metal Drum with Inner Liner;215
15.3.3;7.3.3 Plastic Drum with Inner Liner;217
15.3.4;7.3.4 Failed Attempt to Eliminate Electrostatic Nuisances;217
15.3.5;7.3.5 Fire in a Spray?Bed Dryer;219
15.3.6;7.3.6 Ignition in a Micronizer Jet Mill;222
15.3.7;7.3.7 Explosion During Rotational Molding;223
15.3.8;7.3.8 Explosion in a Mixing Silo for Plastic Granules;224
15.3.9;7.3.9 Curiosity During Outflow of Liquid from a Metal Pipe;224
15.4;7.4 Case Histories Related to Spark Discharges;226
15.4.1;7.4.1 Powder Explosion in a Metal Drum;226
15.4.2;7.4.2 Dust Removal from Pharmaceutical Pills;227
15.4.3;7.4.3 Sparks at a Throttle Valve (V4.1);228
15.4.4;7.4.4 Filling n?Hexane into Metal Drums (? P 15);229
15.4.5;7.4.5 Hose Filter;230
15.4.6;7.4.6 Water Flowing Through PVC Hose;232
15.4.7;7.4.7 Lost and Found;233
15.4.8;7.4.8 Miraculous Earthing Clamp;234
15.5;7.5 Ignition Caused by Cone Discharges;234
15.6;7.6 Doubts with Electrostatic Ignitions;235
15.6.1;7.6.1 Fire in a Polyethylene Drum;235
15.6.2;7.6.2 Fire in a Solvent Cleaning Area;237
15.6.3;7.6.3 Burst of a Glass Pipe;240
15.7;7.7 Act with Relevant Experience;241
15.7.1;7.7.1 Basic Information;241
15.8;PowerPoint Presentations;242
15.9;Video;243
15.10;References;243
16;Chapter 8 Targeted Use of Charges;245
16.1;8.1 Applications;245
16.2;8.2 Examples of the Creative Implementation of Applications;248
16.2.1;8.2.1 Adhesive Bonding - Blocking;248
16.2.2;8.2.2 Adhesion of an Insert on a Variable Base;249
16.2.3;8.2.3 Blocking a Number of Paper Webs or Film Webs in One Ribbon;251
16.2.4;8.2.4 Adhesion of a Melt Layer on the Chill Roll;252
16.2.5;8.2.5 Avoiding Telescoping When Winding;253
16.2.6;8.2.6 In?Mold?Labeling (IML)-In?Mold?Decoration (IMD);254
16.2.7;8.2.7 Oil Application on Metal Sheets;256
16.2.8;8.2.8 Application of Liquid Media on Fast Moving Webs;256
16.2.9;8.2.9 Drying of Fast Moving Substrates;258
16.2.10;8.2.10 Gravure Printing and Coating Machine;259
16.2.11;8.2.11 Reduction of Particle Mist in the Coating Process;263
16.2.12;8.2.12 Use of Charging for Technical Measurement Processes;265
16.2.13;8.2.13 Precipitation of Mixed Substances;266
16.2.14;8.2.14 Electroadhesion;269
16.2.15;8.2.15 Surface Treatment with Corona Systems;270
16.3;8.3 Summary;273
16.4;Picture Credits;273
16.5;Video Credits;274
16.6;References;274
17;M Mathematics Toolbox;275
17.1;M1 Energy W of a Capacitance;277
17.1.1;M1.1 Minimum Ignition Energy WMIE;277
17.1.2;M1.2 Power P;277
17.1.3;M1.3 Electrical Efficiency ?;278
17.2;M2 Field E; Field Strength E?;278
17.2.1;M2.1 Homogeneous Field between Plane Plates;278
17.2.2;M2.2 Field of Point Charge;278
17.2.3;M2.3 Permittivity ?;279
17.2.4;M2.4 Field of Rod (Wire) Charge;279
17.3;M3 Flux Density D? (Earlier: Dielectric Displacement);279
17.4;M4 Frequency f;280
17.4.1;M4.1 Wavelength ?;280
17.4.2;M4.2 Circular Frequency ?;280
17.5;M5 Inductance L;280
17.5.1;M5.1 Inductance Ls of an Air Coil;281
17.6;M6 Capacitance C;281
17.6.1;M6.1 Rod (Wire) across a Conductive Area;281
17.6.2;M6.2 Coaxial Cable/Cylinder Capacitance;282
17.6.3;M6.3 Conductive Sphere in Space;282
17.6.4;M6.4 Sphere Across a Conductive Area;282
17.6.5;M6.5 Shunt of Single Capacitors;283
17.6.6;M6.6 Plate Capacitor;283
17.6.7;M6.7 Series of Single Capacitors;283
17.6.7.1;M6.7.1 Series of Two Single Capacitors;283
17.7;M7 Force F, F;284
17.7.1;M7.1 Force between 2 Point Charges (Coulomb s law);284
17.8;M8 Charge Q;285
17.8.1;M8.1 Moved Charge Qm;285
17.8.2;M8.2 Charge of Electron Beam Qe;285
17.8.3;M8.3 Surface Charge Density ?;285
17.8.3.1;M8.3.1 Maximum Surface Charge Density ?max;286
17.8.4;M8.4 Mass Charge Density Q;286
17.8.5;M8.5 Volume Charge Density ?;286
17.9;M9 Potential ?;286
17.10;M10 Voltage U;287
17.10.1;M10.1 In a Homogeneous Electric Field;287
17.10.2;M10.2 Voltage Gradient When Charging a Capacitor;287
17.10.3;M10.3 Voltage Gradient When Discharging a Capacitor;287
17.10.4;M10.4 Time Constant ? (of RC Circuit);288
17.10.5;M10.5 Kirchhoff s Loop Rule;288
17.10.6;M10.6 Kirchhoff s Junction Rule;288
17.10.7;M10.7 Breakdown Voltage of a Discharge Gap (Paschen s Law);289
17.11;M11 Resistance R (Universal);289
17.11.1;M11.1 Resistance R0 (Object or Material);289
17.11.2;M11.2 Surface Resistivity ?S (Object or Material);290
17.11.3;M11.3 Volume Resistivity ?V (Object or Material);290
17.11.4;M11.4 Resistivity ?V of a Conductor (Wire);290
17.11.5;M11.5 Leakage Resistance RE (Object or Material);291
17.11.6;M11.6 Conductance G;291
17.11.7;M11.7 Conductivity ?;291
17.11.8;M11.8 Shunt (of Single Resistors);292
17.11.8.1;M11.8.1 Shunt of Two Single Resistors;292
17.11.9;M11.9 Series (of Single Resistors);292
17.11.10;M11.10 Impedance of a Capacitance RC (AC Resistance);293
17.11.11;M11.11 Impedance of a Inductance RL (AC Resistance);293
18;Annex;297
18.1;1 Videosfor download from www.wiley-vch.de;297
18.2;2 PowerPointPresentations;297
18.2.1;2.1 Theory of Electrostatics (Visualized by Experiments);297
18.2.2;2.2 Practical Examples with Freddy (Electrostatic Hazards in Plant areas);298
19;Index;299
20;EULA;308
mehr

Autor