Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Pedestrian and Evacuation Dynamics 2008

E-BookPDF1 - PDF WatermarkE-Book
833 Seiten
Englisch
Springer Berlin Heidelbergerschienen am11.03.20102010
The international conference on "Pedestrian and Evacuation Dynamics", held on February 27-29, 2008 at Wuppertal University in Germany, was the fourth in this series after successful meetings in Duisburg (2001), Greenwich (2003) and Vienna (2005). The conference was aimed at improving the scientific exchange between scientists, experts and practitioners of various fields of pedestrian and evacuation dynamics and featured: the analysis of evacuation processes and pedestrian motion, modeling of pedestrian dynamics in various situations, experiments on pedestrian dynamics, human behavior research, regulatory action. All these topics are included in this book to give a broad and state-of-the-art overview of pedestrian and evacuation dynamics.mehr
Verfügbare Formate
BuchGebunden
EUR213,99
E-BookPDF1 - PDF WatermarkE-Book
EUR213,99

Produkt

KlappentextThe international conference on "Pedestrian and Evacuation Dynamics", held on February 27-29, 2008 at Wuppertal University in Germany, was the fourth in this series after successful meetings in Duisburg (2001), Greenwich (2003) and Vienna (2005). The conference was aimed at improving the scientific exchange between scientists, experts and practitioners of various fields of pedestrian and evacuation dynamics and featured: the analysis of evacuation processes and pedestrian motion, modeling of pedestrian dynamics in various situations, experiments on pedestrian dynamics, human behavior research, regulatory action. All these topics are included in this book to give a broad and state-of-the-art overview of pedestrian and evacuation dynamics.
Details
Weitere ISBN/GTIN9783642045042
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum11.03.2010
Auflage2010
Seiten833 Seiten
SpracheEnglisch
IllustrationenXIV, 834 p. 385 illus.
Artikel-Nr.1440619
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface;5
2;Contents;7
3;Part I Experiment and Evacuation;15
3.1;The UK WTC9/11 Evacuation Study: An Overview of the Methodologies Employed and Some Preliminary Analysis;16
3.1.1;Introduction;16
3.1.1.1;Research Themes;18
3.1.2;Research Protocols;19
3.1.2.1;Recruitment;20
3.1.2.2;Interview Structure and Content;20
3.1.3;Development of HEED Database and Coding Process ;21
3.1.4;Preliminary Data Analysis;23
3.1.4.1;Stoppage Data for WTC1;24
3.1.4.2;Stair Travel Speeds;27
3.1.4.3;Response Times;33
3.1.5;Concluding Comments;35
3.1.6;References;36
3.2;Evacuation Movement in Photoluminescent Stairwells;38
3.2.1;Introduction;38
3.2.2;Methodology;40
3.2.2.1;Experimental Design;41
3.2.2.2;Data Gathering;42
3.2.3;Field Study Results;43
3.2.3.1;Questionnaire Results;43
3.2.3.1.1;Respondent Profile;43
3.2.3.1.2;Alarm and Initial Response;44
3.2.3.1.3;Evacuation Times;45
3.2.3.1.4;Stairwell Evacuation;46
3.2.3.2;Data from the Video Cameras;48
3.2.3.2.1;Time to Start;48
3.2.3.2.2;Speed of Movement;49
3.2.3.2.3;Observed Behavior;51
3.2.4;Summary and Conclusions;53
3.2.4.1;Evacuees' Subjective Assessment of PLM Signage;53
3.2.4.2;Occupant Movement;53
3.2.4.3;Comparison of PLM Installations;54
3.2.4.4;Comparison of PLM with Emergency Lighting;54
3.2.5;References;55
3.3;Automatic Extraction of Pedestrian Trajectories from Video Recordings;56
3.3.1;Introduction and Motivation;56
3.3.2;Experiments;57
3.3.3;Extraction of Trajectories;58
3.3.3.1;Calibration;58
3.3.3.2;Recognition;59
3.3.3.3;Tracking;62
3.3.3.4;Height Detection;62
3.3.4;Results;63
3.3.4.1;Implementation;63
3.3.4.2;Trajectories;64
3.3.4.3;Combination of Camera Views;64
3.3.4.4;Missing Frames;65
3.3.4.5;Error;65
3.3.5;Summary and Outlook;67
3.3.6;References;67
3.4;Stairwell Evacuation from Buildings: What We Know We Don't Know;68
3.4.1;Introduction;68
3.4.2;Occupant Movement in Building Evacuation;69
3.4.3;Current Study;70
3.4.4;Conclusions;77
3.4.5;References;78
3.5;Evacuation of a High Floor Metro Train in a Tunnel Situation: Experimental Findings;80
3.5.1;Introduction;80
3.5.1.1;Description of the Train;81
3.5.1.2;Description of the Environmental Factors;82
3.5.1.3;Description of the Participants;83
3.5.1.3.1;Physical Data of the Participants;83
3.5.1.3.2;Distribution of the Participants;85
3.5.1.4;Documentation and Evaluation of the Experiments;86
3.5.1.5;Description of the Evacuation Set up;86
3.5.2;Observations and Findings;87
3.5.2.1;Trial 1: Flow Rates;87
3.5.2.2;Trial 2: Exit Behavior;88
3.5.2.3;Trial 2: Formation of Congestions;91
3.5.3;Conclusions;93
3.5.4;References;93
3.6;Using Laser Scanner Data to Calibrate Certain Aspects of Microscopic Pedestrian Motion Models;95
3.6.1;Introduction;95
3.6.2;The Experiments at PAMELA;96
3.6.3;The Tracking Algorithm;99
3.6.4;Modelling of Stopping and Turning Movements;102
3.6.5;Conclusions;104
3.6.6;Acknowledgements;105
3.6.7;References;105
3.7;Pedestrian Vision and Collision Avoidance Behavior: Investigation of the Information Process Space of Pedestrians Using an Eye Tracker;107
3.7.1;Background;107
3.7.2;Methodologies;111
3.7.3;Results;112
3.7.3.1;General Fixation Behavior;112
3.7.3.2;Fixations by the Object Type;113
3.7.3.3;Location of the Observed Fixations;113
3.7.4;Discussion;116
3.7.5;Conclusions;118
3.7.6;References;118
3.8;FDS+Evac: An Agent Based Fire Evacuation Model;121
3.8.1;Introduction;121
3.8.2;Method;122
3.8.2.1;Movement Algorithm;123
3.8.2.2;Interaction of the Agents and Fire;126
3.8.3;Results;127
3.8.3.1;Test Case A;127
3.8.3.2;Test Case B;129
3.8.3.3;Test Case C;130
3.8.4;Summary;131
3.8.5;Acknowledgements;131
3.8.6;References;131
3.9;Comparisons of Evacuation Efficiency and Pre-travel Activity Times in Response to a Sounder and Two Different Voice Alarm Messages;133
3.9.1;Introduction;133
3.9.2;Methods;135
3.9.3;Results;137
3.9.3.1;Shopping Center Restaurant Evacuation;137
3.9.3.2;Multistory Office Building Meeting Room Evacuation;138
3.9.3.3;University Teaching Laboratory Experiment with Three Alarm Types;139
3.9.3.4;Findings from Questionnaire-University Teaching Laboratory Experiment with Three Alarm Types;142
3.9.4;Discussion;143
3.9.4.1;Effects of Alarm Type on PTAT Recognition and Response Times;143
3.9.4.2;Perceived Seriousness of the Alarm;144
3.9.4.3;Group Interactions;145
3.9.4.4;Design Behavioural Scenarios;145
3.9.5;Conclusion;146
3.9.6;References;146
3.10;Design of Voice Alarms-the Benefit of Mentioning Fire and the Use of a Synthetic Voice;147
3.10.1;Introduction;147
3.10.2;Method;149
3.10.2.1;Design of Messages;149
3.10.2.2;Questionnaire Study at IKEA;150
3.10.2.2.1;Participants;150
3.10.2.2.2;Procedure;150
3.10.2.3;Evacuation Experiments at Lund University;151
3.10.2.3.1;Participants;151
3.10.2.3.2;Procedure;151
3.10.3;Results;152
3.10.3.1;Synthetic Versus Human Voice ;153
3.10.3.2;With Versus Without `Fire';153
3.10.4;Discussion;154
3.10.5;Conclusions;155
3.10.6;References;156
3.11;Enhanced Empirical Data for the Fundamental Diagram and the Flow Through Bottlenecks;157
3.11.1;Introduction;157
3.11.2;Review of Empirical Results;158
3.11.2.1;Fundamental Diagram;158
3.11.2.2;Bottleneck Flow;160
3.11.3;Research Project-Overview;162
3.11.4;Influence of the Measurement Method;163
3.11.5;Conclusions;167
3.11.6;References;167
3.12;Parameters of Pedestrian Flow for Modeling Purposes;169
3.12.1;Introduction;169
3.12.2;Fundamental Laws of Pedestrian Flow;170
3.12.3;The Theory for Emotional State, Density of Flow and Travel Speed Law;173
3.12.4;Special Cases of Foot Traffic Flows;174
3.12.4.1;Cross Flows;175
3.12.4.2;Contra Flows;175
3.12.4.3;Movement on Routs with Unlimited Width;176
3.12.4.4;Movement Through Door Aperture;176
3.12.5;Modeling of Pedestrians Movement in a Flow;176
3.12.6;Conclusions;179
3.12.7;References;181
3.13;Emergency Preparedness in the Case of a Tsunami-Evacuation Analysis and Traffic Optimization for the Indonesian City of Padang;183
3.13.1;Introduction;184
3.13.2;Related Work;185
3.13.3;Input Data;185
3.13.3.1;Geographical Information Derived from Remote Sensing;186
3.13.3.2;Inundation Scenarios;187
3.13.3.3;Socio-Economic Data;188
3.13.4;Simulation Framework;190
3.13.5;Results;191
3.13.6;Existing Problems;191
3.13.7;Conclusion;192
3.13.8;References;193
3.14;Case Studies on Evacuation Behaviour in a Hotel Building in BART and in Real Life;195
3.14.1;Evacuation Behaviour;195
3.14.2;Research Method;197
3.14.2.1;Research Aim, Focus and Selected Object;197
3.14.2.2;Test Scenario;197
3.14.2.3;Participants;198
3.14.2.4;Observations;199
3.14.2.5;BARTtrial;200
3.14.3;Case Studies;201
3.14.3.1;BARTtrial;201
3.14.3.1.1;BARTtrial participant 7082903;201
3.14.3.1.2;BARTtrial participant 7082904;201
3.14.3.1.3;BARTtrial participant 7082905;202
3.14.3.1.4;BARTtrial participant 7120401;202
3.14.3.1.5;BARTtrial participant 7120402;203
3.14.3.1.6;BARTtrial participant 7120403;203
3.14.3.1.7;BARTtrial participant 7120404;204
3.14.3.1.8;BARTtrial participant 7120405;204
3.14.3.2;Real Hotel;205
3.14.3.2.1;Real hotel participant 7101901;205
3.14.3.2.2;Real hotel participant 7101902;205
3.14.3.2.3;Real hotel participant 7101903;206
3.14.3.2.4;Real hotel participant 7101904;206
3.14.3.2.5;Real hotel participant 7101905;206
3.14.3.2.6;Real hotel participant 7101906;207
3.14.3.2.7;Real hotel participant 7101907;207
3.14.3.2.8;Real hotel participant 7101908;208
3.14.3.2.9;Real hotel participant 7102004;208
3.14.4;Comparison of Case Studies in BARTtrial and in Real Hotel;209
3.14.5;Conclusions and Further Work;211
3.14.6;References;212
3.15;Analysis of Empirical Trajectory Data of Pedestrians;214
3.15.1;Introduction;214
3.15.2;Low Density;214
3.15.2.1;Hybrid Approach;215
3.15.3;Medium-to-High Density;218
3.15.4;High Density;219
3.15.5;Social-Force Model;219
3.15.5.1;Improved Specifications of the Social-Force Model;222
3.15.6;Summary;224
3.15.7;References;224
3.16;Model-Based Real-Time Estimation of Building Occupancy During Emergency Egress;226
3.16.1;Introduction;227
3.16.2;Problem Definition;228
3.16.3;Sensor-Only Estimator;229
3.16.4;Model-Based Estimator for Building Egress Mode;230
3.16.4.1;People Movement Model;230
3.16.4.2;Sensor Models;232
3.16.4.3;Accounting for Constraints in the Estimate;232
3.16.4.4;Accounting for Constraints in the Covariance Estimate;233
3.16.5;Simulation Test Results;234
3.16.6;Conclusion;235
3.16.7;References;235
3.17;Experiments on Evacuation Dynamics for Different Classes of Situations;236
3.17.1;Introduction;236
3.17.2;Experiments;237
3.17.2.1;Description;237
3.17.2.2;Results;239
3.17.3;Conclusions;242
3.17.4;References;243
3.18;Prediction and Mitigation of Crush Conditions in Emergency Evacuations;244
3.18.1;Introduction;244
3.18.2;Definition of Crush Conditions;246
3.18.2.1;Spatial;246
3.18.2.2;Temporal;247
3.18.2.3;Perceptual and Cognitive Factors;247
3.18.2.4;Procedural;248
3.18.2.5;Summary;248
3.18.3;Case Studies;248
3.18.3.1;Rhode Island Nightclub;248
3.18.3.2;Gothenburg Dancehall;249
3.18.3.3;E2 Nightclub Incident;249
3.18.3.4;Hillsborough;250
3.18.4;Previous Work in the Field;250
3.18.4.1;Implicit;250
3.18.4.2;Explicit;251
3.18.5;Our Proposed Approach;252
3.18.5.1;Identification;252
3.18.5.2;Qualification;253
3.18.5.3;Quantification;254
3.18.5.4;Hybrid Approach;254
3.18.6;Benefits of Our Approach;255
3.18.7;Conclusion;256
3.18.8;References;256
3.19;Start Waves and Pedestrian Movement- An Experimental Study;258
3.19.1;Introduction and Experimental Setup;258
3.19.2;Results and Discussion;258
3.20;Clearance Time for Pedestrian Crossing;260
3.20.1;Purpose of the Study;260
3.20.2;Methodology;261
3.20.3;Results;262
3.20.3.1;Experiment Examples;264
3.20.4;Conclusions;265
3.20.5;References;266
3.21;Ship Evacuation-Guidelines, Simulation, Validation, and Acceptance Criteria;267
3.21.1;Ship Evacuation: History and Guidelines;267
3.21.1.1;Historical Background;267
3.21.1.2;Guidelines for Ship Evacuation;267
3.21.2;Simulation of Evacuation Processes on Passenger Ships;268
3.21.2.1;Influences on Ship Evacuation;268
3.21.2.2;The Procedure: Assembly and Embarkation Phase;268
3.21.2.3;ASET in the Case of a Ship;269
3.21.3;Calibration, Validation, and Verification;269
3.21.3.1;Calibration of Evacuation Models for Ships;269
3.21.3.2;Implementation and Verification;270
3.21.3.3;Validation of a Model Based on Simulation Results;271
3.21.3.4;Acceptance Criteria;271
3.21.4;Conclusions and Outlook;272
3.21.4.1;Safe Return to Port;272
3.21.4.2;Information Resources;272
3.21.5;Acknowledgements;272
3.21.6;References;272
3.22;Empirical Study of Pedestrians' Characteristics at Bottlenecks;273
3.22.1;Experimental Setup;274
3.22.2;Results;275
3.22.2.1;Density in Front of the Bottleneck;275
3.22.2.2;Density Inside the Bottleneck;275
3.22.3;Conclusions and Outlook;276
3.22.4;References;278
3.23;RFID Technology Applied for Validation of an Office Simulation Model;279
3.23.1;Introduction;279
3.23.2;Validation Approach;281
3.23.2.1;Criterion Variables;281
3.23.2.2;Goodness-of-Fit;282
3.23.3;Observation Method-RFID;283
3.23.4;Validation Results;284
3.23.4.1;Zone Utilisation;284
3.23.4.2;Employees;284
3.23.5;Discussion;285
3.23.6;References;285
3.24;Study on Crowd Flow Outside a Hall via Considering Velocity Distribution of Pedestrians;286
3.24.1;Introduction;286
3.24.2;Model;287
3.24.3;Simulation and Results;287
3.24.4;Conclusion;291
3.24.5;References;292
3.25;Analysis on the Propagation Speed of Pedestrian Reaction: Velocity of Starting Wave and Stopping Wave;293
3.25.1;Introduction;293
3.25.2;Experiments;294
3.25.2.1;Forthright Walking;294
3.25.2.2;Circular Walking;294
3.25.3;Cellular Automaton Simulations;296
3.25.4;Mean Field Analysis;297
3.25.5;Conclusion;298
3.25.6;References;298
4;Part II Simulation and Modeling;299
4.1;Toward Smooth Movement of Crowds;300
4.1.1;What is Jamology?;300
4.1.2;Modeling Crowds;301
4.1.2.1;Different Type of Models;301
4.1.2.2;Floor Field Model and its Extensions;302
4.1.2.2.1;Basic Update Rules;303
4.1.2.2.2;Resolution of Conflicts;304
4.1.2.2.3;Calculation of the Static Field in Arbitrary Geometries;304
4.1.2.2.4;Contraction at a Wide Exit;306
4.1.2.2.5;Parameters and Their Physical Relevance;307
4.1.2.2.6;Force Field;308
4.1.3;Smooth Movement;309
4.1.3.1;Inertia Effect;309
4.1.3.2;Anticipation;309
4.1.3.3;Obstacles;311
4.1.3.4;Deterministic Evacuation;312
4.1.4;Concluding Discussions;313
4.1.5;References;314
4.2;Modeling Evacuees' Exit Selection with Best Response Dynamics;316
4.2.1;Introduction;316
4.2.2;The Model and a Game Theoretic Formulation;317
4.2.2.1;An N-Player Game;318
4.2.2.2;Exit Selection Model;318
4.2.2.3;Mathematical Formulation of the Model;319
4.2.2.4;Additional Features of the Model;321
4.2.3;Computational Results;322
4.2.4;Discussion;325
4.2.5;Acknowledgements;325
4.2.6;References;325
4.3;Front-to-Back Communication in a Microscopic Crowd Model;327
4.3.1;Introduction;327
4.3.2;Characterizing Front-to-Back Communication;328
4.3.3;Modeling Front-to-Back Communication;330
4.3.3.1;The Floor Field Model;330
4.3.3.2;The Swarm Force Model;331
4.3.3.3;Front-to-Back Communication in the Swarm Force Model;332
4.3.4;Laboratory Scenario;333
4.3.5;Who Concert Disaster Scenario;335
4.3.5.1;Reconstructing the Plaza at Riverside Coliseum;336
4.3.5.2;Analysis of the Disaster;337
4.3.6;Conclusion;339
4.3.7;References;340
4.4;Comparison of Various Methods for the Calculation of the Distance Potential Field;341
4.4.1;Introduction;341
4.4.2;Methods for the Calculation of a Distance Potential Field;342
4.4.2.1;Short Mathematical Parenthesis: Vector Norms;342
4.4.2.2;Flood Fill Methods;342
4.4.2.3;Manhattan Metric;342
4.4.2.4;Chessboard Metric;343
4.4.2.5;Variant 1: Combination of Manhattan and Chessboard;343
4.4.2.6;Variant 2: 2 over Corners;344
4.4.2.7;Variant 3: Larger Neighborhoods;345
4.4.2.8;Dijkstra's Algorithm on a Visibility Graph;345
4.4.2.9;Ray Casting;345
4.4.2.10;Other Methods of Error Reduction;346
4.4.3;Analytical Considerations;346
4.4.3.1;Errors for Manhattan and Chessboard Metric;346
4.4.3.2;Error for Variant 1 (Combination);347
4.4.3.3;Error for Variant 2 (2 over Corners);348
4.4.4;Computation Times;349
4.4.4.1;Geometries;349
4.4.4.2;Results;349
4.4.5;Conclusions;351
4.4.6;Acknowledgements;351
4.4.7;References;352
4.5;Agent-Based Simulation of Evacuation: An Office Building Case Study;353
4.5.1;Introduction;353
4.5.2;Evacuation Data Analysis;354
4.5.2.1;Evacuation Description;354
4.5.2.2;Analysis Results;355
4.5.2.2.1;Velocity vs. Density;355
4.5.2.2.2;Cumulative Characteristics of Egress;357
4.5.2.2.3;People Behavior;358
4.5.3;Simulation Model;359
4.5.4;Graph Decomposition;360
4.5.5;Conclusion;362
4.5.6;Acknowledgements;362
4.5.7;References;363
4.6;A Genetic Algorithm Module for Spatial Optimization in Pedestrian Simulation;364
4.6.1;Introduction;365
4.6.1.1;Initial Situation;365
4.6.1.2;Objectives;366
4.6.1.3;Requirements;366
4.6.2;Genetic Algorithms (GA);367
4.6.2.1;General Definitions;367
4.6.2.2;The Evolutionary Model;367
4.6.2.3;Use of GA Framework;367
4.6.3;Realization of the Optimization Module;368
4.6.3.1;Data Structure;368
4.6.3.2;Mapping;369
4.6.3.3;Assessment Criteria;370
4.6.3.4;Graphical User Interface (GUI);371
4.6.3.4.1;Visualization;371
4.6.3.4.2;Interaction;372
4.6.3.4.3;Managing Plans;372
4.6.3.5;Performance;373
4.6.3.6;Tests;373
4.6.4;Results;374
4.6.5;Outlook;374
4.6.6;Acknowledgements;374
4.6.7;References;375
4.7;Opinion Formation and Propagation Induced by Pedestrian Flow;376
4.7.1;Introduction;376
4.7.2;Model;378
4.7.3;Simulation and Analysis;380
4.7.4;Conclusion;382
4.7.5;Acknowledgements;383
4.7.6;References;384
4.8;Passenger Dynamics at Airport Terminal Environment;385
4.8.1;Introduction;385
4.8.1.1;Trends and Challenges at Airports;385
4.8.1.2;Status Quo of Passenger Behavior;387
4.8.2;Airport Environment;389
4.8.3;Passenger Tracking Tool;391
4.8.4;Results;393
4.8.4.1;Gender;394
4.8.4.2;Travel Purpose-Business vs. Leisure;394
4.8.4.3;Groups;395
4.8.4.4;Baggage;396
4.8.5;Conclusion;397
4.8.6;Outlook;398
4.8.7;Acknowledgements;399
4.8.8;References;399
4.9;Application Modes of Egress Simulation;401
4.9.1;Introduction;401
4.9.2;People Movement System (ICE);402
4.9.3;Six Degrees of Simulation;403
4.9.3.1;Naïve Mode;404
4.9.3.2;Operational Mode;405
4.9.3.3;Predictive Mode;406
4.9.3.4;Engineered Mode;408
4.9.3.5;Interactive Mode;409
4.9.3.6;Real-Time Mode;410
4.9.4;Discussion;411
4.9.5;Conclusion;412
4.9.6;References;413
4.10;Investigating the Impact of Aircraft Exit Availability on Egress Time Using Computer Simulation;414
4.10.1;Introduction;414
4.10.2;The AASK Database;415
4.10.3;The airEXODUS Evacuation Model;416
4.10.4;Exit Availability Analysis Conducted Using AASK;417
4.10.5;Evacuation Modelling Analysis;419
4.10.5.1;The Geometry, Model Parameters and Scenarios;419
4.10.5.2;Evacuation Simulation Results;420
4.10.6;Conclusions;425
4.10.7;References;426
4.11;Bounded Rationality Choice Model Incorporating Attribute Threshold, Mental Effort, and Risk Attitude: Illustration to Pedestrian Walking Direction Choice Decision in Shopping Streets;427
4.11.1;Introduction;427
4.11.2;Conceptual framework;429
4.11.2.1;Preference Structure;429
4.11.2.2;Decision Heuristics;430
4.11.2.3;Choice of Heuristics;432
4.11.3;Illustration;434
4.11.3.1;Data;434
4.11.3.2;Operationalization;435
4.11.3.3;Model Estimation;436
4.11.4;Conclusion;438
4.11.5;References;439
4.12;A SCA-Based Model for Open Crowd Aggregation;440
4.12.1;Introduction;440
4.12.2;Related Works;441
4.12.2.1;Force-Based Models;441
4.12.2.2;CA-Based Models;442
4.12.2.3;MAS-Based Models;442
4.12.3;SCA Approach to Pedestrian Dynamics;443
4.12.4;Aggregation in Open Crowds;444
4.12.5;Conclusion and Future Works;448
4.12.6;References;449
4.13;Hardware Implementation of a Crowd Evacuation Model Based on Cellular Automata;451
4.13.1;Introduction;451
4.13.2;Cellular Automata;453
4.13.3;Basic Characteristics of the Evacuation Model;453
4.13.4;Implementation of the CA Model;455
4.13.5;Simulation Results;460
4.13.6;Conclusions;462
4.13.7;References;462
4.14;Applying a Discrete Event System Approach to Problems of Collective Motion in Emergency Situations;464
4.14.1;Introduction;464
4.14.2;Discrete Event Systems Modeling with Petri Nets;466
4.14.2.1;DES Basic Principles;466
4.14.2.2;Fundamental Notations of Petri Nets;467
4.14.3;Petri Net Application to Egress Dynamics;469
4.14.3.1;PN Modules for Rooms and Gateways;469
4.14.3.2;Remarks About PN Generalization and Timing;472
4.14.4;The Case Study;473
4.14.5;Conclusion and Future Developments;475
4.14.6;Acknowledgements;475
4.14.7;References;475
4.15;SIMULEM: Introducing Goal Oriented Behaviours in Crowd Simulation;477
4.15.1;Introduction;477
4.15.2;Goal Oriented Behavioural Model;479
4.15.2.1;Model Overview;479
4.15.2.2;Interaction Concepts;480
4.15.3;Simulation Architecture;482
4.15.3.1;Simulation Software Upgrades;482
4.15.3.2;Simulation Configuration;483
4.15.3.3;Simulation Run;485
4.15.3.4;Results Analysis;486
4.15.4;Results;486
4.15.5;Conclusion and Future Work;487
4.15.6;Acknowledgements;488
4.15.7;References;488
4.16;Conflicts at an Exit in Pedestrian Dynamics;489
4.16.1;Introduction;489
4.16.2;Floor Field Model;490
4.16.2.1;Floor Field;490
4.16.2.2;Conflict Resolution and Friction;491
4.16.3;Friction Function;492
4.16.3.1;Introduction of the Friction Function;492
4.16.3.2;Average Pedestrian Outflow Through an Exit;493
4.16.4;Experiments;495
4.16.5;Comparison Between the Experiment and the Theory;497
4.16.6;The Effect of an Obstacle;498
4.16.7;Conclusion;499
4.16.8;Acknowledgements;500
4.16.9;References;500
4.17;Improving Pedestrian Dynamics Modeling Using Fuzzy Logic;501
4.17.1;Introduction;502
4.17.1.1;Conventional vs Pattern Recognition PDR Navigation;502
4.17.1.2;State of the Art Solutions in Gait Analysis;502
4.17.2;Gait Analysis;503
4.17.3;Step Type Classification;504
4.17.4;Stride Length Computation;505
4.17.5;Tests and Results;506
4.17.6;Conclusion;506
4.17.7;References;506
4.18;Modeling the Link Volume Counts as a Function of Temporally Dependent OD-Flows;507
4.18.1;Introduction;507
4.18.2;Data Sets;508
4.18.3;The Proposed Model;509
4.18.4;Discussion of the Model;511
4.18.5;References;512
4.19;Effect of Subconscious Behavior on Pedestrian Counterflow in a Lattice Gas Model Under Open Boundary Conditions;514
4.19.1;Introduction;514
4.19.2;Outline of Model;515
4.19.3;Simulation Results and Discussions;516
4.19.4;Conclusions;518
4.19.5;References;519
4.20;Hand-Calculation Methods for Evacuation Calculation-Last Chance for an Old-Fashioned Approach or a Real Alternative to Microscopic Simulation Tools?;520
4.20.1;Analysis of a High-Rise Building with Microscopic and Macroscopic Models;520
4.20.1.1;Results of Commercial Software Tools;520
4.20.1.2;Results of Macroscopic Hand-Calculation Methods;521
4.20.2;Analysis of a Theoretical School Building with Microscopic and Macroscopic Models;522
4.20.2.1;Results of Commercial Software Tools;523
4.20.2.2;Results of Macroscopic Hand-Calculation Methods;523
4.20.3;Conclusion;524
4.20.4;References;525
4.21;Adding Higher Intelligent Functions to Pedestrian Agent Model;526
4.21.1;Introduction;526
4.21.2;Pedestrian Modeling Platform for Hybrid Space Representation System;527
4.21.2.1;Introducing Artisoc;527
4.21.3;ASPF(Agent Simulator of Pedestrian Flow) ver.4-Implementation of Autonomous Pedestrian Agent;528
4.21.4;Concluding Remarks-ASSA Project as Further Study;531
4.21.5;References;532
4.22;"FlowTech" and "EvaTech": Two Computer-Simulation Methods for Evacuation Calculation;533
4.22.1;"FlowTech". Flow Movement Modeling;533
4.22.1.1;Workflow with FlowTech;534
4.22.1.2;Evacuation Simulation Example: WTC1;536
4.22.1.3;Future Work;536
4.22.2;"EvaTech". Individual Movement Modeling;536
4.22.2.1;Pedestrian Movement;538
4.22.2.2;Human Behavior;538
4.22.2.3;EvaTech Model Validation;539
4.22.2.4;Future Work;540
4.22.3;References;540
4.23;Large Scale Microscopic Evacuation Simulation;542
4.23.1;Introduction;542
4.23.2;Simulation Framework;543
4.23.3;Results;545
4.23.4;Conclusions;546
4.23.5;References;547
4.24;Numerical Optimisation Techniques Applied to Evacuation Analysis;549
4.24.1;Introduction;549
4.24.2;The Methodology;550
4.24.3;Demonstration Problem;551
4.24.4;The Solution;552
4.24.4.1;The Design Variables;552
4.24.4.2;Results and Discussion;553
4.24.5;Concluding Comments;554
4.24.6;Acknowledgements;554
4.24.7;References;554
4.25;A Multi-Method Approach to the Interpretation of Pedestrian Spatio-Temporal Behaviour;556
4.25.1;Introduction;556
4.25.2;Methodology;557
4.25.3;Heuristic Phase;558
4.25.4;Initial Results;559
4.25.4.1;Example Results Based on Motion Data;559
4.25.5;Conclusion;561
4.25.6;References;561
4.26;The Microscopic Model and the Panicking Ball-Bearing;562
4.26.1;Introduction;562
4.26.2;Panic;563
4.26.3;Panic in Microscopic Models;563
4.26.4;Microscopic Human Factors;564
4.26.5;Microscopic Human Factors in the Floor Field Model;565
4.26.6;Conclusion;567
4.26.7;References;568
4.27;Design of Decision Rules for Crowd Controlling Using Macroscopic Pedestrian Flow Simulation;569
4.27.1;Introduction;569
4.27.2;Control Concept;570
4.27.3;Macroscopic Simulation Model;571
4.27.4;Measurement Error Characteristics;572
4.27.5;Design of Decision Rules;573
4.27.6;Conclusion;574
4.27.7;References;574
4.28;3-Tier Architecture for Pedestrian Agent in Crowd Simulation;576
4.28.1;Introduction;576
4.28.2;How the Issue Raised;577
4.28.2.1;Conflicts in Path Planning;577
4.28.2.2;Realistic Movement;578
4.28.2.3;Long-Distance Pathfinding;578
4.28.3;Structure of the Architecture;579
4.28.3.1;Event Flow Control Tier;579
4.28.3.2;Navigation Tier;580
4.28.3.3;Pedestrian Dynamics Tier;582
4.28.4;Computer Experiments;583
4.28.4.1;Finger Effect;583
4.28.4.2;Edge Effect;583
4.28.4.3;Case Study with "Dead End";584
4.28.5;Conclusions;584
4.28.6;References;585
4.29;Optimising Vessel Layout Using Human Factors Simulation;587
4.29.1;Introduction;587
4.29.2;Methodology for Assessing Human Factors Performance;588
4.29.3;The Components of the Human Performance Metric;588
4.29.3.1;Evaluation Scenarios;589
4.29.3.2;Functional Groups;589
4.29.3.3;Performance Measures;589
4.29.4;Defining the Human Performance Metric;589
4.29.5;Demonstration Application of the HPM;590
4.29.5.1;The Geometry;590
4.29.5.2;The Scenarios;590
4.29.5.3;The Simulation Software;591
4.29.5.4;Results and Analysis;591
4.29.6;Concluding Comments;593
4.29.7;References;593
4.30;Agent-Based Animated Simulation of Mass Egress Following an Improvised Explosive Device (IED) Attack;594
4.30.1;Venues Modeled and Software Used;594
4.30.2;Models' Features;595
4.30.3;Model Results;595
4.30.4;Models' Advantages and Limitations;596
4.30.5;Conclusions;598
4.30.6;References;598
4.31;A Novel Kinetic Model to Simulate Evacuation Dynamics;599
4.31.1;Introduction;599
4.31.2;Evacuation Dynamics Model;600
4.31.2.1;Problem and Model Formulation Description;600
4.31.2.2;Theoretical Model Formulation: The Kinetic Model of Evacuation;602
4.31.3;Model Simulation Studies and Comparison Results;604
4.31.4;Conclusion;605
4.31.5;Acknowledgements;605
4.31.6;References;605
4.32;Egress Route Choice Modelling-Concepts and Applications;607
4.32.1;Introduction;607
4.32.2;Egress Route Choice Mechanisms Implemented in ASERI;608
4.32.3;Applications;612
4.32.4;References;613
4.33;Architectural Cue Model in Evacuation Simulation for Underground Space;614
4.33.1;Introduction;614
4.33.2;Architectural Cue Model for Underground Space Evacuation;616
4.33.3;Research Method;617
4.33.3.1;CAVE-Based Conjoint Analysis;617
4.33.3.2;Attributes of the Architectural Cues;618
4.33.3.3;The Design of Scenes with Paired Cues;619
4.33.3.4;Encoding and Decoding;619
4.33.4;Experiment;620
4.33.4.1;The Experiment Facilities;621
4.33.4.2;The Experiment Procedure;621
4.33.5;Analyzes;622
4.33.5.1;The Model Performance;623
4.33.5.2;The Attributes of Architectural Cues;623
4.33.5.3;Preference Between Stair and Exit;626
4.33.6;Conclusions;626
4.33.7;Outlook;626
4.33.8;References;627
4.34;Integrating Strategies in Numerical Modelling of Crowd Motion;628
4.34.1;Introduction;628
4.34.2;From Spontaneous to Actual Velocity;628
4.34.2.1;Notations;629
4.34.2.2;Handling of Contacts;629
4.34.3;Examples of Spontaneous Velocity;629
4.34.3.1;Shortest Path;629
4.34.3.2;Individual Strategies;630
4.34.4;Numerical Results;631
4.34.5;References;633
4.35;Small-Grid Analysis of Evacuation Processes with a Lattice Gas Model for Mixed Pedestrian Dynamics;634
4.35.1;Introduction;634
4.35.2;Simulation and Results;635
4.35.3;Conclusions;638
4.35.4;References;639
4.36;Evacuation Simulation and Human Behaviour Models in Tall Buildings;640
4.36.1;Introduction;640
4.36.2;Building Traffic Simulator;641
4.36.2.1;Passenger Model;641
4.36.2.2;Staircase Model;641
4.36.2.3;Elevator Model;642
4.36.3;Human Behaviour Model for Vertical Movement;642
4.36.3.1;Macroscopic Routing Model;642
4.36.3.2;Microscopic Reaction Models;643
4.36.4;World Trade Centre Evacuation;644
4.36.5;References;645
4.37;Proof of Evacuation Routes and Safety Exits: Time Data as the Main Criteria for the Evaluation of Escape Routes and Safety Exits?;646
4.37.1;Settings;646
4.37.1.1;Evacuation Times;646
4.37.1.2;Investigated Study Cases;647
4.37.1.3;Simulation Models;647
4.37.2;Outcomes;648
4.37.2.1;Evacuation Times;648
4.37.2.2;Exit Width;649
4.37.2.3;Path Length;649
4.37.3;Conclusions;650
4.37.4;References;650
4.38;Dependence of Modelled Evacuation Times on Key Parameters and Interactions;653
4.38.1;Introduction;653
4.38.2;Methods;654
4.38.2.1;Evacuation of a Single Rectangular Retail Enclosure (2000 m2);654
4.38.2.2;Multi-Enclosure Building (up to 10-Storeys Served Office);655
4.38.3;Results;656
4.38.3.1;Retail Enclosure Evacuations;656
4.38.3.2;Results: Multi-Storey Evacuation Simulations and Experiments Simulations;658
4.38.3.2.1;Validation-Unannounced Evacuation Experiments;659
4.38.4;Conclusions;660
4.38.4.1;Conclusions from Single Enclosure Evacuations;660
4.38.4.2;Conclusions from Multi-Storey Building Evacuations;660
4.38.5;References;660
4.39;A Modification of the Social Force Model by Foresight;662
4.39.1;Introduction;662
4.39.2;Single Lane Walking;663
4.39.2.1;Binary Interactions from Single Lane Following;664
4.39.2.2;Single Lane Head-on Collisions;664
4.39.3;2D Walking;666
4.39.4;Conclusions;666
4.39.5;References;667
4.40;Models for Crowd Movement and Egress Simulation;668
4.40.1;Some General Remarks;668
4.40.2;Model Classification;669
4.40.3;List of Models;670
4.40.4;Existing Model Reviews;670
4.40.5;The Wiki Approach;672
4.40.6;Internet Resources;672
4.40.7;Acknowledgements;673
4.40.8;References;673
4.41;Modelling Pedestrian Escalator Behaviour;674
4.41.1;Introduction;674
4.41.2;Data Collection;675
4.41.3;Escalator Model;675
4.41.3.1;Microscopic Escalator Model;675
4.41.4;Escalator Model Evacuation Demonstration;676
4.41.4.1;Evacuation Results;677
4.41.5;Concluding Comments;679
4.41.6;References;680
4.42;Introducing a Coupled Model for Simulating Crowd Behaviour;681
4.42.1;Context of Our Model;681
4.42.2;Perceiving-Acting Model;681
4.42.3;The Model Process;683
4.42.3.1;A Perception Model;683
4.42.3.2;A Planning Model;684
4.42.3.2.1;Target-Achievement and Obstacle-Avoidance as Local Navigation Model;685
4.42.3.3;Stress-Sensing Model;686
4.42.4;Conclusions and Outlook;686
4.42.4.1;Future Work;687
4.42.5;Acknowledgements;687
4.42.6;References;687
4.43;Evacuation Modelling of Fire Scenarios in Passenger Trains;688
4.43.1;Introduction;688
4.43.2;Evacuation Cases;689
4.43.3;Input Data;690
4.43.4;Evacuation Results;691
4.43.4.1;Movement Inside the Train;691
4.43.4.2;Evacuation of the Trains;692
4.43.5;Conclusions;693
4.43.6;References;694
4.44;Pedestrian Dynamics with Event-Driven Simulation;695
4.44.1;Introduction;695
4.44.2;Social-Force Models;695
4.44.2.1;General Considerations;695
4.44.2.2;Simplified One-Dimensional Realization;696
4.44.3;Motivation for Event-Driven Simulation;697
4.44.4;Event-Driven Simulation with Velocity-Adaptation;697
4.44.5;Results;699
4.44.6;Discussion and Summary;700
4.44.7;References;700
5;Part III Psychology;701
5.1;The Need for Behavioral Theory in Evacuation Modeling;702
5.1.1;Introduction;702
5.1.2;"Behavioral Facts";703
5.1.3;Building Evacuation Models;705
5.1.3.1;Behavioral Technique 1: The Behavior Is Defined Entirely by the User;705
5.1.3.2;Behavioral Technique 2: The Behavior Is Simulated Based on a Specific Condition (if-then);706
5.1.3.3;Behavioral Technique 3: The Behavior Is Simulated Based on Multiple Factors of Influence;707
5.1.3.4;Summary;708
5.1.4;Benefits of Behavioral Theory;709
5.1.5;Conclusion;710
5.1.6;References;711
5.2;NO_PANIC. "Escape and Panic in Buildings"-Architectural Basic Research in the Context of Security and Safety Research;714
5.2.1;Motivation;714
5.2.2;The Five Dimensions of Architecture;716
5.2.3;Qualities vs. Quantities;717
5.2.4;Signage vs. Space;718
5.2.5;Towards Architectural Solutions that Support Egress;718
5.2.5.1;Avoiding Delays in Egress;719
5.2.5.2;Avoiding Dualities;719
5.2.5.3;Architectural Elements for Managing Egress;721
5.2.6;Conclusions;722
5.2.7;References;723
5.3;Was It Panic? An Overview About Mass-Emergencies and Their Origins All Over the World for Recent Years;724
5.3.1;Introduction;724
5.3.2;What Is Panic?;725
5.3.2.1;Different Definitions of Panic or Panic Attack;725
5.3.3;Definitions of Crush and Stampede;727
5.3.3.1;Definitions Used in this Article;727
5.3.3.2;Panic, Stampede and Crush in the Media;728
5.3.4;Experiments on Panic or Decision-Making Processes;728
5.3.4.1;Discussion of the Experiments Performed by French and Mintz;729
5.3.5;Different Mass-Emergencies in the Case of "Panic";730
5.3.6;Conclusions;734
5.3.7;References;735
5.4;Hierarchical Structure of the Mass and Group-Level Behaviors in Urban Rail Transfer Stations;737
5.4.1;Introduction;737
5.4.2;Hierarchical Structure of URT Station Space, Passenger Service Network and Mass;738
5.4.2.1;Passenger Organization Processes;738
5.4.2.2;Hierarchical Structure of URT Stations;739
5.4.2.3;Passenger Service Network ;739
5.4.2.4;The Hierarchical Structure of the Mass;741
5.4.3;Analysis of the Features and Behaviors of Individuals and Groups;742
5.4.3.1;Individuals;742
5.4.3.1.1;(1) Human Physical Features;742
5.4.3.1.2;(2) Environmental Features;742
5.4.3.1.3;(3) Psychological and Sociological Features;742
5.4.3.1.4;(4) Individual Behaviors;743
5.4.3.2;Groups;744
5.4.3.2.1;Features of Groups;744
5.4.3.2.2;(1) Composition;744
5.4.3.2.3;(2) Relationships Within a Group;745
5.4.3.2.4;(3) Shapes and Areas;745
5.4.3.2.5;(4) Mobility;745
5.4.3.2.6;Behaviors of Groups;745
5.4.3.2.7;(1) Interactions of Members;745
5.4.3.2.8;(2) Interactions of Groups;746
5.4.3.2.9;The Impacts of Groups on the Crowd;747
5.4.3.2.10;(1) The Form and Mobility of Groups Make the Crowd Uneven;747
5.4.3.2.11;(2) Groups Are More Powerful than Individuals in Conflicts;747
5.4.3.2.12;(3) Breaking and Regrouping of Groups Disturb the Smooth Flow;747
5.4.4;Process Modeling of the Mass and Simulation Framework Based on Group Level Behaviors ;748
5.4.4.1;Process Modeling of the Mass;748
5.4.4.1.1;(1) Information Exchanging Space and Information Transmitting;749
5.4.4.1.2;(2) Information Updating and Behaviors of All Hierarchies;749
5.4.4.2;URT Station Mass Movement Simulation Framework;750
5.4.4.2.1;(1) Database;750
5.4.4.2.2;(2) Models;750
5.4.4.2.3;(3) Modules;751
5.4.5;Discussion;751
5.4.6;Acknowledgements;752
5.4.7;References;752
5.5;The Use of a Structure and Its Influence on Evacuation Behavior;753
5.5.1;Introduction;753
5.5.2;Information Carried by the Individual;753
5.5.3;Procedures Employed;754
5.5.4;Addressing the Situation;756
5.5.5;Concluding Remarks;758
5.5.6;References;758
6;Part IV Miscellaneous;759
6.1;Inhalation Injury of Lung and Heart After Inhalation of Toxic Substances;760
6.1.1;Introduction;760
6.1.2;Toxic Agents;761
6.1.3;Irritant Effects of Inhalant Noxious Agents;762
6.1.4;Ambient Air Pollution;763
6.1.5;Acute Smoke Injury;765
6.1.6;Clinical Manifestations;765
6.1.7;Medical Problems with Pedestrian Evacuation;766
6.1.8;Medical Problems in Firefighters;766
6.1.9;Treatment of Smoke Inhalation;767
6.1.10;Conclusion;767
6.1.11;References;768
6.2;Quantitative Comparison of International Design Standards of Escape Routes in Assembly Buildings;769
6.2.1;Introduction;769
6.2.2;General Approach;770
6.2.3;Flow Capacity of Exits;772
6.2.4;Comparison of Raw Data;773
6.2.4.1;Minimum Width of Exit Doors;773
6.2.4.2;Design Occupant Load;773
6.2.4.3;Increase of Exit Width per Occupant;774
6.2.5;Results;774
6.2.5.1;Exit Width Correlated with Assembly Room Area;774
6.2.5.2;Travel Times Correlated with Assembly Room Area at Design Occupant Density;775
6.2.5.3;Travel Times Correlated with Assembly Room Area at Normalized Occupant Density of 4 p/m2;776
6.2.6;Some Further Differences in the Codes;776
6.2.7;Discussion;777
6.2.8;Conclusions;778
6.2.9;Acknowledgements;778
6.2.10;References;779
6.3;Visualizing the Human Form for Simulation and Planning;780
6.3.1;Introduction;780
6.3.2;Background;781
6.3.3;Elaboration;783
6.3.3.1;Discussion of the Criteria in the Taxonomy;783
6.3.3.2;Dependencies Between Criteria in the Taxonomy;783
6.3.4;Conclusion;785
6.3.5;References;786
6.4;A Real-Time Pedestrian Animation System;787
6.4.1;Introduction;787
6.4.2;System Overview and Levels of Processing;788
6.4.3;Skeletal Animation Generation;789
6.4.4;Behavior Model Integration;790
6.4.5;Implementation and Results;791
6.4.6;Conclusion;792
6.4.7;References;792
6.5;Modeling of Escape Routes According to Occupancy, Economy, and Level of Safety in Slovak Republic;794
6.5.1;Building Description;794
6.5.2;Requirements for the Escape Routes;795
6.5.2.1;Calculations;795
6.5.3;Conclusion;797
6.5.4;References;798
7;List of Participants;799
mehr