Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Electrocatalysis in Balancing the Natural Carbon Cycle

E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
524 Seiten
Englisch
Wiley-VCHerschienen am13.07.20211. Auflage
Electrocatalysis in Balancing the Natural Carbon Cycle
Explore the potential of electrocatalysis to balance an off-kilter natural carbon cycle
In Electrocatalysis in Balancing the Natural Carbon Cycle, accomplished researcher and author, Yaobing Wang, delivers a focused examination of why and how to solve the unbalance of the natural carbon cycle with electrocatalysis. The book introduces the natural carbon cycle and analyzes current bottlenecks being caused by human activities. It then examines fundamental topics, including CO2 reduction, water splitting, and small molecule (alcohols and acid) oxidation to prove the feasibility and advantages of using electrocatalysis to tune the unbalanced carbon cycle.
You'll realize modern aspects of electrocatalysis through the operando diagnostic and predictable mechanistic investigations. Further, you will be able to evaluate and manage the efficiency of the electrocatalytic reactions. The distinguished author presents a holistic view of solving an unbalanced natural carbon cycle with electrocatalysis.
Readers will also benefit from the inclusion of:A thorough introduction to the natural carbon cycle and the anthropogenic carbon cycle, including inorganic carbon to organic carbon and vice versa
An exploration of electrochemical catalysis processes, including water splitting and the electrochemistry CO2 reduction reaction (ECO2RR)
A practical discussion of water and fuel basic redox parameters, including electrocatalytic materials and their performance evaluation in different electrocatalytic cells
A perspective of the operando approaches and computational fundamentals and advances of different electrocatalytic redox reactions

Perfect for electrochemists, catalytic chemists, environmental and physical chemists, and inorganic chemists, Electrocatalysis in Balancing the Natural Carbon Cycle will also earn a place in the libraries of solid state and theoretical chemists seeking a one-stop reference for all aspects of electrocatalysis in carbon cycle-related reactions.


Yaobing Wang is Professor at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He received his doctorate from the Institute of Chemistry, Chinese Academy of Sciences in 2008 and his research focuses on the design and synthesis of novel electrocatalysts and their applications.
mehr
Verfügbare Formate
E-BookPDF2 - DRM Adobe / Adobe Ebook ReaderE-Book
EUR192,99
E-BookEPUB2 - DRM Adobe / EPUBE-Book
EUR192,99

Produkt

KlappentextElectrocatalysis in Balancing the Natural Carbon Cycle
Explore the potential of electrocatalysis to balance an off-kilter natural carbon cycle
In Electrocatalysis in Balancing the Natural Carbon Cycle, accomplished researcher and author, Yaobing Wang, delivers a focused examination of why and how to solve the unbalance of the natural carbon cycle with electrocatalysis. The book introduces the natural carbon cycle and analyzes current bottlenecks being caused by human activities. It then examines fundamental topics, including CO2 reduction, water splitting, and small molecule (alcohols and acid) oxidation to prove the feasibility and advantages of using electrocatalysis to tune the unbalanced carbon cycle.
You'll realize modern aspects of electrocatalysis through the operando diagnostic and predictable mechanistic investigations. Further, you will be able to evaluate and manage the efficiency of the electrocatalytic reactions. The distinguished author presents a holistic view of solving an unbalanced natural carbon cycle with electrocatalysis.
Readers will also benefit from the inclusion of:A thorough introduction to the natural carbon cycle and the anthropogenic carbon cycle, including inorganic carbon to organic carbon and vice versa
An exploration of electrochemical catalysis processes, including water splitting and the electrochemistry CO2 reduction reaction (ECO2RR)
A practical discussion of water and fuel basic redox parameters, including electrocatalytic materials and their performance evaluation in different electrocatalytic cells
A perspective of the operando approaches and computational fundamentals and advances of different electrocatalytic redox reactions

Perfect for electrochemists, catalytic chemists, environmental and physical chemists, and inorganic chemists, Electrocatalysis in Balancing the Natural Carbon Cycle will also earn a place in the libraries of solid state and theoretical chemists seeking a one-stop reference for all aspects of electrocatalysis in carbon cycle-related reactions.


Yaobing Wang is Professor at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He received his doctorate from the Institute of Chemistry, Chinese Academy of Sciences in 2008 and his research focuses on the design and synthesis of novel electrocatalysts and their applications.
Details
Weitere ISBN/GTIN9783527832279
ProduktartE-Book
EinbandartE-Book
FormatPDF
FormatFormat mit automatischem Seitenumbruch (reflowable)
Verlag
Erscheinungsjahr2021
Erscheinungsdatum13.07.2021
Auflage1. Auflage
Seiten524 Seiten
SpracheEnglisch
Dateigrösse17670 Kbytes
Artikel-Nr.5791494
Rubriken
Genre9201

Inhalt/Kritik

Inhaltsverzeichnis
Preface
Acknowledgments

Part I Introduction
1 Introduction
Reference

Part II Natural Carbon Cycle
2 Natural Carbon Cycle and Anthropogenic Carbon Cycle
2.1 Definition and General Process
2.2 From Inorganic Carbon to Organic Carbon
2.3 From Organic Carbon to Inorganic Carbon
2.4 Anthropogenic Carbon Cycle
2.4.1 Anthropogenic Carbon Emissions
2.4.2 Capture and Recycle of CO2 from the Atmosphere
2.4.3 Fixation and Conversion of CO2
2.4.3.1 Photochemical Reduction
2.4.3.2 Electrochemical Reduction
2.4.3.3 Chemical/Thermo Reforming
2.4.3.4 Physical Fixation
2.4.3.5 Anthropogenic Carbon Conversion and Emissions Via Electrochemistry
References

Part III Electrochemical Catalysis Process
3 Electrochemical Catalysis Processes
3.1 Water Splitting
3.1.1 Reaction Mechanism
3.1.1.1 Mechanism of OER
3.1.1.2 Mechanism of ORR
3.1.1.3 Mechanism of HER
3.1.2 General Parameters to Evaluate Water Splitting
3.1.2.1 Tafel Slope
3.1.2.2 TOF
3.1.2.3 Onset/Overpotential
3.1.2.4 Stability
3.1.2.5 Electrolyte
3.2 Electrochemistry CO2 Reduction Reaction (ECDRR)
3.2.1 Possible Reaction Pathways of ECDRR
3.2.1.1 Formation of HCOO- or HCOOH
3.2.1.2 Formation of CO
3.2.1.3 Formation of C1 Products
3.2.1.4 Formation of C2 Products
3.2.1.5 Formation of CH3COOH and CH3COO-
3.2.1.6 Formation of n-Propanol (C3 Product)
3.2.2 General Parameters to Evaluate ECDRR
3.2.2.1 Onset Potential
3.2.2.2 Faradaic Efficiency
3.2.2.3 Partial Current Density
3.2.2.4 Environmental Impact and Cost
3.2.2.5 Electrolytes
3.2.2.6 Electrochemical Cells
3.3 Small Organic Molecules Oxidation
3.3.1 The Mechanism of Electrochemistry HCOOH Oxidation
3.3.2 The Mechanism of Electro-oxidation of Alcohol
References

Part IV Water Splitting and Devices
4 Water Splitting Basic Parameter/Others
4.1 Composition and Exact Reactions in Different pH Solution
4.2 Evaluation of the Catalytic Activity
4.2.1 Overpotential
4.2.2 Tafel Slope
4.2.3 Stability
4.2.4 Faradaic Efficiency
4.2.5 Turnover Frequency
References
5 H2O Oxidation
5.1 Regular H2O Oxidation
5.1.1 Noble Metal Catalysts
5.1.2 Other Transition Metals
5.1.3 Other Catalysts
5.2 Photo-Assisted H2O Oxidation
5.2.1 Metal Compound-Based Catalysts
5.2.2 Metal-Metal Heterostructure Catalysts
5.2.3 Metal-Nonmetal Heterostructure Catalysts
References
6 H2O Reduction and Water Splitting Electrocatalytic Cell
6.1 Noble-Metal-Based HER Catalysts
6.2 Non-Noble Metal Catalysts
6.3 Water Splitting Electrocatalytic Cell
References

Part V H2 Oxidation/O2 Reduction and Device
7 Introduction
7.1 Electrocatalytic Reaction Parameters
7.1.1 Electrochemically Active Surface Area (ECSA)
7.1.1.1 Test Methods
7.1.2 Determination Based on the Surface Redox Reaction
7.1.3 Determination by Electric Double-Layer Capacitance Method
7.1.4 Kinetic and Exchange Current Density (jk and j0)
7.1.4.1 Definition
7.1.4.2 Calculation
7.1.5 Overpotential HUPD
7.1.6 Tafel Slope
7.1.7 Halfwave Potentials
References
8 Hydrogen Oxidation Reaction (HOR)
8.1 Mechanism for HOR
8.1.1 Hydrogen Bonding Energy (HBE)
8.1.2 Underpotential Deposition (UPD) of Hydrogen
8.2 Catalysts for HOR
8.2.1 Pt-based Materials
8.2.2 Pd-Based Materials
8.2.3 Ir-Based Materials
8.2.4 Rh-Based Materials
8.2.5 Ru-Based Materials
8.2.6 Non-noble Metal Materials
References
9 Oxygen Reduction Reaction (ORR)
9.1 Mechanism for ORR
9.1.1 Battery System and Damaged Electrodes
9.1.2 Intermediate Species
9.2 Catalysts in ORR
9.2.1 Noble Metal Materials
9.2.1.1 Platinum/Carbon Catalyst
9.2.1.2 Pd and Pt
9.2.2 Transition Metal Catalysts
9.2.3 Metal-Free Catalysts
9.3 Hydrogen Peroxide Synthesis
9.3.1 Catalysts Advances
9.3.1.1 Pure Metals
9.3.1.2 Metal Alloys
9.3.1.3 Carbon Materials
9.3.1.4 Electrodes and Reaction Cells
References
10 Fuel Cell and Metal-Air Battery
mehr

Autor

Yaobing Wang is now Professor at Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences in 2008. His research is focused on design and synthesis of novel electrocatalysts and their applications in energy conversion and storage, etc.
Weitere Artikel von
Wang, Yaobing