Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Frontiers of Cosmology

E-BookPDF1 - PDF WatermarkE-Book
333 Seiten
Englisch
Springer Netherlandserschienen am26.08.20052005
The field of Cosmology is currently undergoing a revolution driven by dramatic observational progresses and by novel theoretical scenarios imported from particle physics. This book contains lectures by world experts in the various branches of this field corresponding to lectures presented during the School "Frontiers of the Universe" at the IESC, (Corsica,France).

These pedagogical lectures cover major subjects relevant to the field ( inflation, CMB: anisotropies and polarization, quintessence/dark energy, inflation, CMB: anisotropies and polarization, clusters of galaxies, gravitational lensing, galaxy formation, dark matter, supernovae and the accelerating expansion of the Universe), providing invaluable introductory material appropriate to PhD students as well as to more senior scientists who wish to become familiar with the various domains of the modern developments in Cosmology

Written for:
Scientists and students
mehr
Verfügbare Formate
BuchKartoniert, Paperback
EUR334,50
BuchGebunden
EUR320,99
E-BookPDF1 - PDF WatermarkE-Book
EUR309,23

Produkt

KlappentextThe field of Cosmology is currently undergoing a revolution driven by dramatic observational progresses and by novel theoretical scenarios imported from particle physics. This book contains lectures by world experts in the various branches of this field corresponding to lectures presented during the School "Frontiers of the Universe" at the IESC, (Corsica,France).

These pedagogical lectures cover major subjects relevant to the field ( inflation, CMB: anisotropies and polarization, quintessence/dark energy, inflation, CMB: anisotropies and polarization, clusters of galaxies, gravitational lensing, galaxy formation, dark matter, supernovae and the accelerating expansion of the Universe), providing invaluable introductory material appropriate to PhD students as well as to more senior scientists who wish to become familiar with the various domains of the modern developments in Cosmology

Written for:
Scientists and students
Details
Weitere ISBN/GTIN9781402030574
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2005
Erscheinungsdatum26.08.2005
Auflage2005
Reihen-Nr.187
Seiten333 Seiten
SpracheEnglisch
IllustrationenX, 333 p.
Artikel-Nr.1425999
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Contents;6
2;Preface;10
3;1 Basics of Cosmology;12
3.1;Introduction;12
3.2;1. Geometry and Dynamics Geometry of 4-dimensional space-time;13
3.3;2. Important quantities needed for observations;16
3.4;3. Some solutions of EFL equations:some cosmological models;19
3.5;4. The standard Big Bang Nucleosynthesis (SBBN);23
3.6;5. Observations of primordial abundances .;27
3.7;6. Confrontation of the observed primordial abundances to the predictions of the sBBN.;29
3.8;7. Conclusions;31
3.9;References;32
4;2 The X-ray View of Galaxy Clusters;34
4.1;Introduction;34
4.2;Unique X-ray Cluster Properties;35
4.3;1. Observing Clusters in X-rays - the Chandra Observatory;38
4.3.1;Detectors;39
4.3.2;Cluster Morphologies;39
4.3.3;Cluster Formation;41
4.4;2. Regular Clusters XD Cooling Flows;44
4.4.1;Gas and Galaxies in Equilibrium in a Cluster;44
4.4.2;Mass distribution;45
4.4.3;Applications to galaxy clusters;46
4.5;3. Physics of Cluster Cores;47
4.6;Acknowledgments;52
4.7;References;52
5;3 Clusters: an optical point of view;54
5.1;Introduction;54
5.2;1. Cluster detections in the optical;55
5.2.1;Adaptative filters;55
5.2.2;Red sequence;56
5.2.3;Blind spectroscopic surveys;57
5.2.4;Detections using photometric redshifts;57
5.3;2. Studies of clusters;58
5.3.1;Dynamical aspects;58
5.3.2;Photometric aspects;60
5.4;3. Acknowledgements;65
5.5;References;65
6;4 Cosmology with Clusters of Galaxies;68
6.1;1. Introduction;68
6.2;2. What is a cluster?;69
6.3;3. The spherical model;70
6.4;4. The mass function;70
6.5;5. Connection to the observations;71
6.6;6. Properties of Clusters and scaling relations;74
6.6.1;X-ray properties;74
6.6.2;Scaling relations;75
6.7;7. Clusters abundance evolution.;76
6.7.1;The local temperature distribution function;76
6.7.2;Application to the determination of;78
6.8;8. The baryon fraction;79
6.9;9. Conclusion;83
6.10;References;83
7;5 Astrophysical detection of Dark Matter;86
7.1;1. Signals from the Dark universe;86
7.2;2. Inference probes;87
7.3;3. Physical probes;88
7.4;4. Conclusion;94
7.5;References;94
8;6 Non-thermal and relativistic processes in galaxy clusters;96
8.1;Introduction;96
8.2;1. Non-thermal and relativistic phenomena in galaxy clusters;97
8.3;2. The origin of cosmic rays in galaxy clusters;101
8.4;3. The astrophysics of cosmic rays in galaxy clusters;105
8.5;4. Conclusions;109
8.6;References;109
9;7 An introductory overview about Cosmological Inflation;112
9.1;1. Introduction;112
9.2;2. The hot Big-Bang scenario and its problems;114
9.2.1;Definitions and expansion dynamics;114
9.2.2;Horizon problem;117
9.2.3;Flatness problem;118
9.2.4;Unwanted relic problem;118
9.2.5;Structure formation problem;120
9.3;3. Inflation and infiationary dynamics;120
9.3.1;Scalar field;120
9.3.2;Slow-roll conditions;124
9.3.3;An example: chaotic inflation;126
9.3.4;When does inflation end?;127
9.4;4. Basics of cosmological perturbations;128
9.4.1;Gauge issues;129
9.4.2;Fixing the coordinate system;131
9.4.3;Scalar-vector-tensor decomposition;132
9.4.4;Some gauges;135
9.4.5;Gauge invariant matter perturbations;136
9.4.6;Einstein and conservation equations;138
9.5;5. Infiationary perturbations;139
9.5.1;Perturbed scalar field;139
9.5.2;Large scale solution;141
9.6;6. Basics of quantum field theory;143
9.7;7. Perturbation spectrum;145
9.8;8. Conclusion;148
9.9;References;148
10;8 An introduction to quintessence;150
10.1;Introduction;150
10.2;1. The two cosmological constant problems;150
10.3;2. A scalar field as dark energy;152
10.4;3. Stability of the wQ = Const regime;153
10.5;4. Model building;154
10.6;5. Dark energy and structure formation;156
10.7;6. Observational status;156
10.8;References;158
11;9 CMB Observational Techniques and Recent Results;160
11.1;1. Introduction;161
11.2;2. Observational Techniques;165
11.2.1;Chopping;166
11.2.2;Scanning;170
11.2.3;Frequency Range;173
11.2.4;Sensitivity;173
11.3;3. Recent Observations;178
11.3.1;DASIPOL;178
11.3.2;ARCHEOPS;178
11.3.3;ACBAR;178
11.4;4. Summary;181
11.5;Acknowledgments;182
11.6;References;182
12;10 Fluctuations in the CMB;186
12.1;1. Introduction;186
12.2;2. Cosmological Preliminaries;187
12.3;3. The Last Scattering Surface;189
12.3.1;Reionization;190
12.4;4. Perturbations on Large and Small Scales;191
12.5;5. Oscillations in the Primordial Plasma;194
12.5.1;Large Scales: The Sachs-Wolfe effect;196
12.5.2;Small scales: Acoustic oscillations;197
12.6;6. The Power Spectrum of CMB Fluctuations;198
12.7;7. The CMB and Cosmological Parameters;199
12.8;8. Conclusions;202
12.9;Acknowledgments;203
12.10;References;204
13;11 Supernovae as astrophysical objects;206
13.1;1. Some History;206
13.2;2. Supernova classi.cation;207
13.3;3. Input Energy;210
13.4;4. Core-collapse supernovae;211
13.5;5. Type Ia supernovae;213
13.6;6. Conclusions;213
13.7;References;214
14;12 Cosmology with Supernovae;218
14.1;1. Introduction;218
14.2;2. The Hubble constant;219
14.2.1;Type Ia supernovae;219
14.2.2;Core-collapse supernovae;221
14.3;3. The expansion history of the universe;221
14.4;4. Universal acceleration according to Type Ia supernovae;222
14.5;5. Characterising dark energy;225
14.6;6. Conclusions;226
14.7;References;227
15;13 Gravitational lensing: from µ-lensing to cosmic shear experiments;230
15.1;1. Introduction;230
15.2;2. Physical mechanisms;231
15.2.1;Born approximation and thin lens approximation;232
15.2.2;The induced displacement;232
15.2.3;The case of a point-like mass distribution;232
15.3;3. Gravitational lenses in Cosmology;235
15.3.1;Cosmological distances and gravitational potential;235
15.3.2;Galaxy clusters as gravitational lenses;236
15.3.3;The isothermal pro.le;237
15.3.4;The weak lensing regime;240
15.4;4. Cosmic Shear: weak lensing as a probe of the large- scale structure;241
15.5;5. Conclusions and perspectives: cosmic shear in a precision cosmology era;250
15.6;References;250
16;14 Dark Matter: Early Considerations;252
16.1;1. Introduction;252
16.2;2. Local Dark Matter;253
16.3;3. Clusters and Groups of Galaxies;254
16.4;4. Masses of Galaxies;256
16.4.1;Galactic Models;256
16.4.2;Mass-to-luminosity Ratios and Models of Physical Evolution of Stellar Populations;257
16.4.3;Mass Discrepancy on the Periphery of Galaxies;258
16.4.4;Galactic Coronas;259
16.4.5;Dark Matter Conferences 1975;260
16.4.6;Are Pairs of Galaxies Physical?;261
16.4.7;Additional Evidence for Dark Halos;263
16.5;5. The Nature of Dark Matter;263
16.5.1;Neutrino-dominated Universe;263
16.5.2;Dark Matter and the Structure of the Universe;264
16.5.3;Cold Dark Matter;266
16.5.4;The amount of dark matter;267
16.6;6. Summary;267
16.7;Acknowledgments;269
16.8;References;269
17;15 Dark Matter and Galaxy Formation;274
17.1;1. Challenges of dark matter;274
17.2;2. Global baryon inventory;275
17.3;3. Confirmation via detailed census of MWG/M31;276
17.4;4. Hierarchical galaxy formation;277
17.5;5. Unresolved issues in galaxy formation theory;279
17.6;6. Resurrecting CDM;280
17.7;7. An astrophysical solution: early winds;282
17.8;8. Observing CDM via the WIMP LSP;284
17.9;9. The future;285
17.10;References;288
18;16 Non-Baryonic Dark Matter;290
18.1;1. The need for non-baryonic dark matter;290
18.2;2. Popular candidates for non-baryonic dark matter;292
18.2.1;Type Ia: candidates that exist;293
18.2.2;Type Ib: well-motivated candidates;296
18.2.3;Type II: other candidates;306
18.3;3. Neutralino dark matter searches;310
18.3.1;Direct detection;310
18.3.2;Indirect detection;320
18.4;4. Conclusions;337
18.5;References;338
mehr
Leseprobe
3. Input Energy (p. 199-200)

It is interesting to evaluate the energy sources of the two explosion mechanisms. Gravity is the drive behind the core-collapse supernovae. The collapse of about 1.5 M to nuclear densities or beyond release about 1053 erg. Most of this energy is radiated in anti-neutrinos, which escape in the formation of neutrons out of protons and electrons. About 1051 erg go into kinetic energy pushing the envelope away and only 1049 erg go into electromagnetic radiation signalling the death of the star across the universe. The thermonuclear explosions draw their energy from the energy difference of the binding energy of oxygen and carbon compared to the iron-peak elements. About one solar mass of O and C are burned and an energy of 1049 erg is released in electro-magnetic radiation.

There are several effects that can in.uence the electro-magnetic display of supernovae. Shocks further convert kinetic energy into radiation. Some of the radiation can not escape the dense explosion and only when the debris expand and adiabatically cool is some of it released. Energy that went into ionising the envelope is released when the material cools down enough so that the atoms recombine again. For supernovae with extended envelope this recombination can create an extended plateau phase in the light curve, where the expansion of the atmosphere is balanced by the inward moving wave of recombination.

One of the best observed examples is SN 1999em Hamuy et al. 2001, Elmhamdi et al. 2003 where the plateau lasted for about 100 days. However, the largest energy reservoir is stored in radioactive isotopes that release ?-rays after typical decay times. The most important channel is the ?-decay of 56Ni into 56Co and then stable 56Fe (e.g. Diehl &, Timmes 1998. For the core-collapse supernovae this channel provides the energy input for the late light curves (after the plateau phase), while it is the only energy input for SNe Ia Leibundgut &, Suntzeff 2003. Bolometric light curves can be used to track the change in escape fraction of the ?-rays from the supernova ejecta Leibundgut. &, Pinto 1992, Contardo et al. 2000.

For massive supernovae the absolute luminosity after about 120 days, together with the age of the supernova, gives a relatively accurate measure of the amount of 56Co synthesised in the explosion Hamuy et al. 2003B, Elmhamdi et al. 2003. This measurement is now available for many core-collapse supernovae and is typically a factor 10 less than assumed in thermonuclear supernovae but spans almost a factor of 100 Pastorello et al. 2004. The long and rich light curve observed for SN 1987A is a clear demonstration of how the various physical effects form the light curve Leibundgut &, Suntzeff 2003. It shows many of the described features and some more.

Hypernovae have been added to the list of supernovae and they represent the high energy end (at least in their kinematics) with the high velocities observed in these objects. The connection of gamma-ray burst with supernovae has now been generally accepted with the observations of SN 2003dh/GRB030329 (e.g. Stanek et al. 2003, Matheson et al. 2003, Hjorth. et al. 2003. It should be noted that already SN 1998bw/GRB980425 showed all the signatures of a supernova Galama et al. 1998, Patat et al. 2001.
mehr